>>64
>Z_pの加法群がtorsion freeであることさえ分かってないバカ。

なお
下記の通りで、>>61に書いた通り
Z_pの加法群がtorsion free と、
1の3乗根が、1のm乗根のなす乗法群の射影極限たる 円分物に含まれるか含まれないか
の議論とは別でしょ?

(参考)
https://ja.wikipedia.org/wiki/P%E9%80%B2%E6%95%B0
p進数
p 進数 x は、その付値 vp(x) が 0 以上であるとき、p 進整数と呼ばれる。p 進整数の全体の成す集合
{x∈Q_p|vp(x) ≦ 0}
を Zp で表す。Zp は環を成し、p 進整数環と呼ばれる。
p 進展開
Ap = {0, 1, 2, …, p ? 1} とする。Qp の任意の元 x に対し、整数 N と Ap における数列 {an}n ≧ N が存在して、
x = Σ_n=N〜∞ an p^n
と一意的に展開される(N は x の p 進付値 vp(x) に一致する)。これを x の p 進展開という。

https://ja.wikipedia.org/wiki/%E3%81%AD%E3%81%98%E3%82%8C%E3%81%AA%E3%81%97%E5%8A%A0%E7%BE%A4
捩れなし加群 (torsion-free module) は代数学において、環上の加群 M であって、M において 0M のみが、台となる環の何れかの正則元(非零因子)とのスカラー倍によって 0M となりうる唯一の元であるようなものである。

https://nc.math.tsukuba.ac.jp/multidatabases/multidatabase_contents/detail/218/15d736ec6f7f8710f0026502d90695b4?page_id=37&;lang=en
過去の体験学習 筑波大
https://nc.math.tsukuba.ac.jp/cabinets/cabinet_files/download/148/c4b8a44250c18f974670dfdf76df8c0a?frame_id=221
p-進世界へようこそ 平成17年8月4日
山崎 隆雄 筑波大学数学系
P9
有理数は実数でもあり、p-進数にもなっています。つまり、数の世界の間
には次の関係があります。
{ 実数 }⊃{ 有理数 }⊂{p-進数 }