>>275 追加
 >>273より
>はい、おかしいですね。「Z^(1)が稠密」というのは、「実数が稠密」と言うようなもの。
>「実数体Rの中で有理数体Qが稠密」と言うのが正しいんじゃないですかね。

揚げ足取りで悪いが
数学における稠密という用語で、下記「稠密順序: 順序集合 S が稠密(順序構造の特徴としての稠密)」
というのがあって
「有理数の全体に通常の大小関係による順序を入れたものは、この意味で稠密である(実数全体のなす順序集合も同様)。他方、整数全体の成す集合に通常の順序を入れたものは稠密でない。」
とあるけどね

だから、この意味で、「実数が稠密」は、”稠密順序: 順序集合 S が稠密(順序構造の特徴としての稠密)”
と解することで、意味で通じるのでは?
 勿論、>>272の稠密は、下記”稠密集合: 位相空間 S の部分集合 T が、S において稠密”の意味ですけどね

(参考)
https://ja.wikipedia.org/wiki/%E7%A8%A0%E5%AF%86
数学における稠密という用語は、以下のような文脈で用いられる。直感的にはぎっしり詰まっているということを表している。
稠密集合: 位相空間 S の部分集合 T が、S において稠密
 疎集合
稠密順序: 順序集合 S が稠密(順序構造の特徴としての稠密)
稠密部分加群
強制法において

https://ja.wikipedia.org/wiki/%E7%A8%A0%E5%AF%86%E9%96%A2%E4%BF%82
数学における稠密関係(ちゅうみつかんけい、英: dense relation)とは、集合 X 上の二項関係 R であって、X の R-関係にある任意の二元 x, y に対し、X の元 z で x とも y とも R-関係にあるようなものが存在するものをいう。
集合 X 上の半順序 ≦ が(あるいは順序集合 (X, ≦) が)稠密であるとは、X の任意の二元 x, y で x < y を満たすものに対し、X の元 z で x < z < y を満たすものが必ず存在することを言う。
有理数の全体に通常の大小関係による順序を入れたものは、この意味で稠密である(実数全体のなす順序集合も同様)。他方、整数全体の成す集合に通常の順序を入れたものは稠密でない。