>>262
スレ主です
ありがと
だけど、あんたは、何にも説明してないよねw
全て、>>248 の ID:kPzJ68nv さん じゃんかw
ID:kPzJ68nv さんは、レベル高いわ。>>250 山内 卓也 とか、すらすら読めるんだろうな

>>261 追加
>ここで、Z^と星の円分物 Z^(1)との対比を考えると

Z(整数環)→ 逆極限 Z^=lim← Z/nz
だが、Zの対応物を 「Z(1)仮」と書くと
Z(1)仮 → 逆極限 Z^(1)=Λ(Ω) def := lim ←-n μn(Ω) ここで, n ≧ 1 に対して, μn(Ω) ⊆ Ω は, Ω の中の 1 の n 乗根のなす群 >>240

Z(1)仮=∪n μn(Ω) (つまり、 1 の n 乗根のなす群μn(Ω)の和)
として
Z(1)仮 には、逆極限 lim ←-n μn(Ω)を作るための素材は、全部含まれている
Z(1)仮 は、明らかに群を成す
下記 円周群 Tと、Z(1)仮と、プリューファー p 群 Z(p^∞)={exp(2πim/p^n)|m∈Z+,n∈Z+}(>>261) との関係は
明らかに T ⊃ Z(1)仮 ⊃ Z(p^∞) なる包含関係 (Z(1)仮は、全ての1のn乗根を含むから、 Z(p^∞) を含む)

星 円分物 Z^(1) は、Z(1)仮を出発点として考えて、しかし Z(1)仮の要素は含まなくなっている
例えば、p=7乗根で、(ζ7^n)^2は、Z^(1) の中ではシッポがついて、有限位数ではなくなっている(>>254
円分物 Z^(1) の方が、圧倒的に大きな群なんだけど(非可算濃度)
かつ Z^(1)は、稠密なんだろうね、多分。(>>210 雪江明彦 代数学3 P16 の"φ(g) は、Gのprofinite 完備化 lim ← G/N で稠密である(演習問題1.3.7)"を使えば、証明できるかもね。略解は速攻で見ましたが・・w)

星 円分物 Z^(1) は、Z(1)仮 を完備化している訳ではないが、Z(1)仮の要素は別の形で含んでいて、それとの対応がつき
かつ、稠密で、完備化の類似になっているのかな。それ以外にも、良い性質があるんだろうね
>>250 山内 卓也 ガロア表現の基礎 とかあるし(基礎なんだw)、l進表現などと相性が良いんだろうね、多分)

ここまで分かった

つづく