>>599
めんどくさいのてn=4, a:0,3,7,12くらいで
p(x) = x^0 + x^3 + x^7 + x^12とおく
既出のように定数cを任意にとる時、p(x)の根α,β,‥と定数u,v,‥を
f(k+c) = uα^k + vβ^k+‥
を満たすように取れる
条件によりα,α^2,α^3は全てp(x)の根でなければならない
よってα^3=θ、α^7=φ、α^12=ψとおくと
θ+φ+ψ = -1
θ^2+φ^2+ψ^2 = -1
θ^3+φ^3+ψ^3 = -1
である
一方で1の原始4乗根をζ、ζ^2=ξ、ζ^3=ηとすれば
ζ+ξ+η=-1
ζ^2+ξ^2+η^2=-1
ζ^3+ξ^3+η^3=-1
であるからαはζ、ξ、ηのいずれかとなる