例の三角形の問題とどのように結びつくかについて補足しておきます。
各辺長が整数の直角三角形の三辺は、適当な自然数 p,m,nを用いて、
p(m^2+n^2)、p(m^2-n^2)、2pmn
で表せます。これで全てを網羅できます。
二等辺三角形の方は、頂角から対辺に垂線を下ろしてできる直角三角形の三辺を
q(a^2+b^2)、q(a^2-b^2)、2qab とすると、二等辺三角形は、(2qabが高さの場合は)
等辺が q(a^2+b^2)、底辺が 2q(a^2-b^2) とすることができます。(※q,a,bは自然数とは限ってません)

周長条件は、 p(m^2+n^2) + p(m^2-n^2) + 2pmn = 2*q(a^2+b^2) + 2q(a^2-b^2)
整理すると、 pm(m+n) = 2qa^2
面積条件は、 p(m^2-n^2) * 2pmn = 2q(a^2-b^2) * 2qab

この式を、面積条件の式を、周長条件の式の二乗 で割ると、
2n(m-n)/(m(m+n)) = b(a+b)(a-b)/(a^3)
が得られ、x=n/m、y=b/a と置くと、2x(1-x)/(1+x) = y(1-y^2) が現れます。

例の問題の答えとして、直角三角形側のの三辺は、377,352,135。が知られています。
p(m^2+n^2)=377、p(m^2-n^2)=135、2pmn=352 として解くと、n/m=11/16 が得られます。
同様に、q(a^2+b^2)=366、q(a^2-b^2)=66、2qab=360 として解くと b/a=5/6
では、もう一つの解、(5/27,5/6)はどこにいったかというと、直角三角形の、縦と横(?)を入れ替え、
p(m^2+n^2)=377、p(m^2-n^2)=352、2pmn=135 として解いた場合のn/mとして現れます。