>>944 追加
Tate twist Z^(1)、
Tate module Z^(1) とも書かれている
Jakob Stixの論文だが
https://projecteuclid.org/proceedings/advanced-studies-in-pure-mathematics/GaloisTeichm%C3%BCller-Theory-and-Arithmetic-Geometry/Chapter/On-cuspidal-sections-of-algebraic-fundamental-groups/10.2969/aspm/06310519
Advanced Studies in Pure Mathematics 63, 2012
Galois-Teichmiiller Theory and Arithmetic Geometry pp. 519-563
On cuspidal sections of algebraic fundamental groups Jakob Stix
(Editor(s) Hiroaki Nakamura, Florian Pop, Leila Schneps, Akio Tamagawa)
P524
§2. Fields with nontrivial Kummer theory
Definition 2. The pro-N completion of an abelian group A is
A^=lim ←N A/nA
Tate module Z^(1) = lim ←n μn.
P540
§7. Orientation and degree
As it matters here, we stress that the Tate twist Z^(1) has an anabelian
definition as the geometric fundamental group πr1 (G?m) of Gm
with the Galk-action induced from π1(Gm/k).
P543
§8. Anabelian theory of units
Before we start the proof we recall that we identify π1 (G?) = Z^(1) and that the Tate-module Z^(1) is defined as lim←n μln.
We therefore write composition in Z^(1) multiplicatively.
Additive notation would suggest having chosen an isomorphism Z^(1) 〜= Z^ of the underlying pro-finite groups, i.e., having chosen a compatible system of roots of unity, a choice that we avoid to make.
(引用終り)
以上
純粋・応用数学(含むガロア理論)9
レス数が950を超えています。1000を超えると書き込みができなくなります。
955現代数学の系譜 雑談 ◆yH25M02vWFhP
2022/03/08(火) 00:23:57.11ID:w11ScS1Kレス数が950を超えています。1000を超えると書き込みができなくなります。