(別解16)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)のrがどんな数でも、x,yの比は変わらないので、x^n+y^n=(x+1)^n…(2)のみを検討する。
(2)をy=2とおいて、(2^n-1)=n{x^(n-1)+ax^(n-2)+…+x}…(3)と変形する。(aは有理数)
(3)はxを1<x<2の小数とすると、右辺は小数となり、成立しないので、xは無理数となる。
(2)のyを任意の有理数として、(y^n-1)=n{x^(n-1)+ax^(n-2)+…+x}…(4)と変形する。
(4)のxは、(3)のxの無理数倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。