(修正24)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)はp^{1/(p-1)}が無理数なので、解x,y,zは整数比とならない。
(3)の解x,y,zが無理数で整数比となるならば、解x,y,zが有理数で、整数比となる。
(4)の解x,y,zは、(3)の解x,y,zのa^{1/(p-1)}倍となるので、(4)の解x,y,zも整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。