>>720
(引用開始)
で、全ての自然数からなる無限集合N:={0,1,・・,n,・・}てこと。これアレフ0です
じゃあ、Zermelo先生流のシングルトンによる順序数ωは?
条件1)このとき、当然ωの濃度は1でなければならない ∵シングルトンだから
条件2)そして、順序数ωは全ての自然数の後に来る最初の極限順序数であること
この二つの条件1)2)を見たすωが存在してはいけないのか?
いけない積極的理由がなければ、数学では存在しうる
∵現代数学では 抽象的な思念として存在しうるならOK! (「フロベニオイド」に同じ)
QED 以上
(引用終り)

補足する
上記のような集合ω、濃度は1(=つまりシングルトン)で
Zermelo先生流のシングルトンによる自然数の構成中で、
全ての有限順序数の後で、かつ 最小の超限順序数

つまりは、「任意の自然数よりも大きい最小の超限順序数」(>>712)なる集合としてのωの存在
これを数学的に否定できない
(つまりは、「こういうωは矛盾を生じるので存在しえない」ことを証明できない)ならば
そのような、シングルトンの集合ωは存在しうる!!
これが、抽象化された現代数学の結論ですよ