>>16
つづき

3 写像の変形理論

正標数でも同様の理論を作り,埋め込みの写像 π : S →
M の変形を考えることで,応用が増えます。実際,森重文
(1979/1982) はまず,M が Fano 多様体 (P2 を高次元へ拡張
したもの) のとき,かってにとった曲線をもとに,正標数特
有の技巧 (Frobenius 写像) と正標数の写像の変形理論によっ
て,写像を変形し,曲線をついに折れるまで曲げて,標数 0
のときも含め有理曲線 P1 を構成しました。さらに,得られ
た有理曲線を,再び,写像の変形理論によって,次数のより
低い有理曲線に分解しました。これが,森理論の核心部分で
す。この応用として,森重文は Hartshorne 予想を解決しまし
た。森の方法は,有理曲線を構成する方法として多くの専門
家に応用され,今では,Bend and Break(曲げて折る) とい
う名前がついている程です。

4 剛性定理

変形理論というのは,変形が豊かに存在して始めて面白い
わけですが,逆に変形しても,全然変化しない多様体があり
ます。あるいは,もっと強く,多様な複素構造が許されない
ような(可微分) 多様体があります。
定理 4 K¨ahler 複素多様体が射影空間 Pn と位相同型ならば
複素多様体としても同型。
n が奇数の時は [小平-Hirzebruch1958/p.744] によって証明
され,n が偶数の時は,Yau により証明が完成されました
(1977)。

つづく