【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形して、
z^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)を考える。
(1)をz^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)とする。
(2)をz^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}を満たす自然数は、x=1、y=1のみである。
このx,yを、z^p=(x+y)に代入すると、zが自然数のとき、式は成り立たない。
よって、(2)は成り立たない。
(2)が成り立たないので、(1)も成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。