>647
>> z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)
の無理数解を、a^{1/(p-1)}(これも無理数とする)倍した時、
> (z^p/a)×a=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)
の有理数解になる可能性があります。

定数倍するので、有理数解になる可能性は、ありません。
もし、有理数解になるとしたら、もとの無理数は、整数比です。


>よって(1)だけを調べるなら、
自然数の範囲だけでなく、無理数の範囲まで調べる必要があるのではないでしょうか?

無理数の範囲まで調べる必要は、ありません。
有理数の範囲までは、調べる必要は、あります。