>>1 日高
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。

ここで言おうとしていることはおそらく
z^p/a=x+y,a={x^(p-1)-x^(p-2)y+…+y^(p-1)}に解があればそれを一斉にλ倍したものが
z^p=x+y,1={x^(p-1)-x^(p-2)y+…+y^(p-1)}の解になるということだろう。
だがλは有理数とは限らない。よって

> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。

だけでは済まないのだ。この式の無理数解でx:y:zが整数比になるものがあり得るから。