【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形して、
z^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}を考える。
z^p=z^p×1=(z^p/a)×aなので、
z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考えれば良い。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}を満たす自然数は、x=1、y=1のみである。
このx,yを、z^p=(x+y)に代入すると、zが自然数のとき、式を満たさない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。