フェルマーの最終定理の簡単な証明4

レス数が1000を超えています。これ以上書き込みはできません。
1日高
垢版 |
2019/12/20(金) 15:51:19.98ID:1mOJhAe/
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる。
(1)の左辺の右側と右辺の右側は等しいので、1={x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)となる。
(2)の有理数解は、x=y=1のみである。z^p=(x+y)にx=1,y=1を代入する。
z^p=1+1=2となる。z^p=2を満たす有理数zはない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
2020/01/15(水) 21:33:43.38ID:GFvFBWqQ
>>932 日高
> 例.p=2のとき、x:y:z=15:8:7となる。
> (1)x^2*1=(z+y)(z-y)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。

1=(z-y)、x^2=(z+y)が出るのはなぜ?

> (2)x^2/9*9=(z+y)(z-y)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。

9=(z-y)、x^2/9=(z+y)が出るのはなぜ?

> (1)(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。

x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたすけど
それはどうなるの?
2020/01/15(水) 21:35:59.97ID:GFvFBWqQ
>>949 日高
> z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。

そりゃそうだよ。同じ式を三つ書いているもん。
2020/01/16(木) 03:24:00.61ID:U6MkxwPF
>>949-950
> x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
あなたのやりかたで、実際にやってみたらたまたま等しくなったという「結果」を
実際にやってみる「前に」使うことはできない。
よって証明は間違っている。
2020/01/16(木) 03:25:34.98ID:U6MkxwPF
>>954 修正
「あなたの証明の中で実際にやってみる前に」使うことはできない
2020/01/16(木) 03:40:37.94ID:U6MkxwPF
>>949-950
それに
> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
同じものならば比が等しいのは当たり前で何も言っていないに等しい
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
どちらにしても間違っている
2020/01/16(木) 03:57:40.68ID:U6MkxwPF
>>956 修正
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
2020/01/16(木) 04:25:45.23ID:oCDhp7+B
日高氏が言おうとしているのは、
z-y=1となるよう定数で割って考える、
ということでは。
959日高
垢版 |
2020/01/16(木) 06:28:17.95ID:D8HUqGB2
>958
>日高氏が言おうとしているのは、
z-y=1となるよう定数で割って考える、
ということでは。

そうです。
2020/01/16(木) 08:25:36.30ID:Y47r3R5f
>>959

> >958
> >日高氏が言おうとしているのは、
> z-y=1となるよう定数で割って考える、
> ということでは。
>
> そうです。
で?証明が間違っているのは全く変わらないが。
961日高
垢版 |
2020/01/16(木) 08:50:42.79ID:D8HUqGB2
>952
>1=(z-y)、x^2=(z+y)が出るのはなぜ?

z^2=A、1=B、(z+y)=C、(z-y)=Dとおくと、
AB=CDならば、B=Dのとき、A=Cとなるからです。

>9=(z-y)、x^2/9=(z+y)が出るのはなぜ?
z^2/9=A、9=B、(z+y)=C、(z-y)=Dとおくと、
AB=CDならば、B=Dのとき、A=Cとなるからです。

>x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたすけど
それはどうなるの?

x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたします。
(x^2/2)*2=(z+y)(z-y)でもみたします。
962日高
垢版 |
2020/01/16(木) 08:54:15.57ID:D8HUqGB2
>955
>「あなたの証明の中で実際にやってみる前に」使うことはできない

どういう意味でしょうか?
963日高
垢版 |
2020/01/16(木) 09:00:00.49ID:D8HUqGB2
>956
>> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
同じものならば比が等しいのは当たり前で何も言っていないに等しい
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
どちらにしても間違っている

>「同じものならば比が等しいのは当たり前で何も言っていないに等しい」

式が違っても、比は等しくなります。
964日高
垢版 |
2020/01/16(木) 09:04:12.19ID:D8HUqGB2
>957
>違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない

「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」

当然です。
965日高
垢版 |
2020/01/16(木) 09:06:08.25ID:D8HUqGB2
>960
>で?証明が間違っているのは全く変わらないが。

間違いの理由を、詳しく説明していただけないでしょうか。
2020/01/16(木) 09:11:24.37ID:Y47r3R5f
>>965

> >960
> >で?証明が間違っているのは全く変わらないが。
>
> 間違いの理由を、詳しく説明していただけないでしょうか。
さんざん指摘してあるのだから、まずはそれに答えろよ。乞食が。
2020/01/16(木) 09:11:48.26ID:Y47r3R5f
>>964

> >957
> >違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
>
> 「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
>
> 当然です。
馬鹿。
2020/01/16(木) 09:11:59.34ID:Y47r3R5f
>>963

> >956
> >> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
> この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
> 同じものならば比が等しいのは当たり前で何も言っていないに等しい
> 違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
> どちらにしても間違っている
>
> >「同じものならば比が等しいのは当たり前で何も言っていないに等しい」
>
> 式が違っても、比は等しくなります。
馬鹿。
2020/01/16(木) 09:14:15.82ID:Y47r3R5f
間違いを強弁するのはもうやめろ。
2020/01/16(木) 09:16:24.78ID:Y47r3R5f
>>964

> >957
> >違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
>
> 「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
>
> 当然です。
その等しくないものを日高が同じと主張してるのだろうが。嘘つきが。
971日高
垢版 |
2020/01/16(木) 09:19:44.10ID:D8HUqGB2
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
972日高
垢版 |
2020/01/16(木) 09:20:47.82ID:D8HUqGB2
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
したがって、x^2×1=(z+y)(z-y)のみを考える。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
973日高
垢版 |
2020/01/16(木) 09:25:17.69ID:D8HUqGB2
例.
x^2*1=(z+y)(z-y)…(1)
1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
x=5/3、y=8/9、z=17/9となる。
x^2/9*9=(z+y)(z-y)…(2)
9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
x=15、y=8、z=17となる。
(1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
2020/01/16(木) 09:34:13.41ID:Y47r3R5f
>>971

> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
指摘無視
2020/01/16(木) 09:34:30.69ID:Y47r3R5f
>>971

> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
ごまかし嘘つき
2020/01/16(木) 09:34:52.45ID:Y47r3R5f
>>973

> 例.
> x^2*1=(z+y)(z-y)…(1)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
> x^2/9*9=(z+y)(z-y)…(2)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
> (1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
痴呆老人
2020/01/16(木) 09:38:15.74ID:UCL9+mvh
>>972,973
とりあえずp=2について、
どんなピタゴラス数も、適当な数で割ることにより、
1=(z-y)
にできるって事だよね。
それってすごい事なのかなあ?
978日高
垢版 |
2020/01/16(木) 09:50:51.02ID:D8HUqGB2
>977
>とりあえずp=2について、
どんなピタゴラス数も、適当な数で割ることにより、
1=(z-y)
にできるって事だよね。
それってすごい事なのかなあ?

すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
2020/01/16(木) 11:00:23.51ID:b5IBvfX/
>>978

> >977
> >とりあえずp=2について、
> どんなピタゴラス数も、適当な数で割ることにより、
> 1=(z-y)
> にできるって事だよね。
> それってすごい事なのかなあ?
>
> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
簡単になってません。
2020/01/16(木) 11:02:42.92ID:b5IBvfX/
根拠なしに嘘を強弁するのはもうやめろ。
981日高
垢版 |
2020/01/16(木) 11:27:06.28ID:D8HUqGB2
>979
>> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
簡単になってません。

x^2=2y+1のxに、任意の有理数を代入すればよいです。
982日高
垢版 |
2020/01/16(木) 11:29:49.65ID:D8HUqGB2
>980
>根拠なしに嘘を強弁するのはもうやめろ。

根拠は、あります。
983日高
垢版 |
2020/01/16(木) 11:31:25.05ID:D8HUqGB2
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
984日高
垢版 |
2020/01/16(木) 11:32:14.86ID:D8HUqGB2
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
したがって、x^2×1=(z+y)(z-y)のみを考える。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
985日高
垢版 |
2020/01/16(木) 11:33:12.57ID:D8HUqGB2
例.
x^2*1=(z+y)(z-y)…(1)
1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
x=5/3、y=8/9、z=17/9となる。
x^2/9*9=(z+y)(z-y)…(2)
9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
x=15、y=8、z=17となる。
(1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
2020/01/16(木) 12:01:26.00ID:b5IBvfX/
>>981

> >979
> >> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
> 簡単になってません。
>
> x^2=2y+1のxに、任意の有理数を代入すればよいです。
簡単になってないじゃん。過去の指摘通り。嘘つき。
2020/01/16(木) 12:03:18.71ID:b5IBvfX/
>>982

> >980
> >根拠なしに嘘を強弁するのはもうやめろ。
>
> 根拠は、あります。
過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
2020/01/16(木) 12:03:28.91ID:b5IBvfX/
>>983

> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
ゴミ
2020/01/16(木) 12:03:38.10ID:b5IBvfX/
>>984

> 【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
> 【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
> x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
> したがって、x^2×1=(z+y)(z-y)のみを考える。
> x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
> x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
> ∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
ゴミ
2020/01/16(木) 12:03:47.09ID:b5IBvfX/
>>985

> 例.
> x^2*1=(z+y)(z-y)…(1)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
> x^2/9*9=(z+y)(z-y)…(2)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
> (1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
ゴミ
2020/01/16(木) 13:38:39.42ID:oCDhp7+B
「となる」の意味、間違えているよ。
2020/01/16(木) 14:26:40.00ID:b7/ZE+wi
>>983
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。

ここの証明は?
993132人目の素数さん
垢版 |
2020/01/16(木) 16:20:28.84ID:MhHdUDUO
日高っち!ガンガレ〰!
994日高
垢版 |
2020/01/16(木) 18:01:23.04ID:D8HUqGB2
>991
>「となる」の意味、間違えているよ。

正しい言い方を教えていただけないでしょうか。
995日高
垢版 |
2020/01/16(木) 18:08:15.97ID:D8HUqGB2
>992
>> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。

ここの証明は?
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}を満たす有理数は、
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=(x^p+y^p)/(x+y)なので、(x,y)=(0,1)、(x,y)=(1,0)
(x,y)=(1,1)のみである。
(x,y)=(1,1)は、z^p=(x+y)を満たさない。
996日高
垢版 |
2020/01/16(木) 18:10:57.65ID:D8HUqGB2
>986
>> x^2=2y+1のxに、任意の有理数を代入すればよいです。
簡単になってないじゃん。過去の指摘通り。嘘つき。

これより、簡単な方法があるでしょうか?
997日高
垢版 |
2020/01/16(木) 18:17:23.95ID:D8HUqGB2
>987
>> >根拠なしに嘘を強弁するのはもうやめろ。
>
> 根拠は、あります。
過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。

984番を見て下さい。
2020/01/16(木) 18:44:53.40ID:b5IBvfX/
>>997

> >987
> >> >根拠なしに嘘を強弁するのはもうやめろ。
> >
> > 根拠は、あります。
> 過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
>
> 984番を見て下さい。
根拠になってない。以上。ゴミ。
2020/01/16(木) 18:45:35.77ID:b5IBvfX/
>>996

> >986
> >> x^2=2y+1のxに、任意の有理数を代入すればよいです。
> 簡単になってないじゃん。過去の指摘通り。嘘つき。
>
> これより、簡単な方法があるでしょうか?
過去指摘されてた。無視した訳だな。
2020/01/16(木) 18:47:13.12ID:b5IBvfX/
>>994

> >991
> >「となる」の意味、間違えているよ。
>
> 正しい言い方を教えていただけないでしょうか。
何故自分で勉強しないのか。
10011001
垢版 |
Over 1000Thread
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 27日 2時間 55分 54秒
10021002
垢版 |
Over 1000Thread
5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。


───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────

会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。

▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/

▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
レス数が1000を超えています。これ以上書き込みはできません。
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況