【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる。
(1)の左辺の右側と右辺の右側は等しいので、1={x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)となる。
(2)の有理数解は、x=y=1のみである。z^p=(x+y)にx=1,y=1を代入する。
z^p=1+1=2となる。z^p=2を満たす有理数zはない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
フェルマーの最終定理の簡単な証明4
レス数が1000を超えています。これ以上書き込みはできません。
1日高
2019/12/20(金) 15:51:19.98ID:1mOJhAe/952132人目の素数さん
2020/01/15(水) 21:33:43.38ID:GFvFBWqQ >>932 日高
> 例.p=2のとき、x:y:z=15:8:7となる。
> (1)x^2*1=(z+y)(z-y)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
1=(z-y)、x^2=(z+y)が出るのはなぜ?
> (2)x^2/9*9=(z+y)(z-y)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
9=(z-y)、x^2/9=(z+y)が出るのはなぜ?
> (1)(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたすけど
それはどうなるの?
> 例.p=2のとき、x:y:z=15:8:7となる。
> (1)x^2*1=(z+y)(z-y)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
1=(z-y)、x^2=(z+y)が出るのはなぜ?
> (2)x^2/9*9=(z+y)(z-y)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
9=(z-y)、x^2/9=(z+y)が出るのはなぜ?
> (1)(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたすけど
それはどうなるの?
953132人目の素数さん
2020/01/15(水) 21:35:59.97ID:GFvFBWqQ954132人目の素数さん
2020/01/16(木) 03:24:00.61ID:U6MkxwPF >>949-950
> x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
あなたのやりかたで、実際にやってみたらたまたま等しくなったという「結果」を
実際にやってみる「前に」使うことはできない。
よって証明は間違っている。
> x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
あなたのやりかたで、実際にやってみたらたまたま等しくなったという「結果」を
実際にやってみる「前に」使うことはできない。
よって証明は間違っている。
955132人目の素数さん
2020/01/16(木) 03:25:34.98ID:U6MkxwPF >>954 修正
「あなたの証明の中で実際にやってみる前に」使うことはできない
「あなたの証明の中で実際にやってみる前に」使うことはできない
956132人目の素数さん
2020/01/16(木) 03:40:37.94ID:U6MkxwPF >>949-950
それに
> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
同じものならば比が等しいのは当たり前で何も言っていないに等しい
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
どちらにしても間違っている
それに
> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
同じものならば比が等しいのは当たり前で何も言っていないに等しい
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
どちらにしても間違っている
957132人目の素数さん
2020/01/16(木) 03:57:40.68ID:U6MkxwPF >>956 修正
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
958132人目の素数さん
2020/01/16(木) 04:25:45.23ID:oCDhp7+B 日高氏が言おうとしているのは、
z-y=1となるよう定数で割って考える、
ということでは。
z-y=1となるよう定数で割って考える、
ということでは。
959日高
2020/01/16(木) 06:28:17.95ID:D8HUqGB2 >958
>日高氏が言おうとしているのは、
z-y=1となるよう定数で割って考える、
ということでは。
そうです。
>日高氏が言おうとしているのは、
z-y=1となるよう定数で割って考える、
ということでは。
そうです。
960132人目の素数さん
2020/01/16(木) 08:25:36.30ID:Y47r3R5f961日高
2020/01/16(木) 08:50:42.79ID:D8HUqGB2 >952
>1=(z-y)、x^2=(z+y)が出るのはなぜ?
z^2=A、1=B、(z+y)=C、(z-y)=Dとおくと、
AB=CDならば、B=Dのとき、A=Cとなるからです。
>9=(z-y)、x^2/9=(z+y)が出るのはなぜ?
z^2/9=A、9=B、(z+y)=C、(z-y)=Dとおくと、
AB=CDならば、B=Dのとき、A=Cとなるからです。
>x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたすけど
それはどうなるの?
x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたします。
(x^2/2)*2=(z+y)(z-y)でもみたします。
>1=(z-y)、x^2=(z+y)が出るのはなぜ?
z^2=A、1=B、(z+y)=C、(z-y)=Dとおくと、
AB=CDならば、B=Dのとき、A=Cとなるからです。
>9=(z-y)、x^2/9=(z+y)が出るのはなぜ?
z^2/9=A、9=B、(z+y)=C、(z-y)=Dとおくと、
AB=CDならば、B=Dのとき、A=Cとなるからです。
>x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたすけど
それはどうなるの?
x^2=(z+y)(z-y)はx=3,y=4,z=5でもみたします。
(x^2/2)*2=(z+y)(z-y)でもみたします。
962日高
2020/01/16(木) 08:54:15.57ID:D8HUqGB2 >955
>「あなたの証明の中で実際にやってみる前に」使うことはできない
どういう意味でしょうか?
>「あなたの証明の中で実際にやってみる前に」使うことはできない
どういう意味でしょうか?
963日高
2020/01/16(木) 09:00:00.49ID:D8HUqGB2 >956
>> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
同じものならば比が等しいのは当たり前で何も言っていないに等しい
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
どちらにしても間違っている
>「同じものならば比が等しいのは当たり前で何も言っていないに等しい」
式が違っても、比は等しくなります。
>> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
同じものならば比が等しいのは当たり前で何も言っていないに等しい
違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
どちらにしても間違っている
>「同じものならば比が等しいのは当たり前で何も言っていないに等しい」
式が違っても、比は等しくなります。
964日高
2020/01/16(木) 09:04:12.19ID:D8HUqGB2 >957
>違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
当然です。
>違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
当然です。
965日高
2020/01/16(木) 09:06:08.25ID:D8HUqGB2 >960
>で?証明が間違っているのは全く変わらないが。
間違いの理由を、詳しく説明していただけないでしょうか。
>で?証明が間違っているのは全く変わらないが。
間違いの理由を、詳しく説明していただけないでしょうか。
966132人目の素数さん
2020/01/16(木) 09:11:24.37ID:Y47r3R5f >>965
> >960
> >で?証明が間違っているのは全く変わらないが。
>
> 間違いの理由を、詳しく説明していただけないでしょうか。
さんざん指摘してあるのだから、まずはそれに答えろよ。乞食が。
> >960
> >で?証明が間違っているのは全く変わらないが。
>
> 間違いの理由を、詳しく説明していただけないでしょうか。
さんざん指摘してあるのだから、まずはそれに答えろよ。乞食が。
967132人目の素数さん
2020/01/16(木) 09:11:48.26ID:Y47r3R5f >>964
> >957
> >違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
>
> 「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
>
> 当然です。
馬鹿。
> >957
> >違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
>
> 「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
>
> 当然です。
馬鹿。
968132人目の素数さん
2020/01/16(木) 09:11:59.34ID:Y47r3R5f >>963
> >956
> >> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
> この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
> 同じものならば比が等しいのは当たり前で何も言っていないに等しい
> 違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
> どちらにしても間違っている
>
> >「同じものならば比が等しいのは当たり前で何も言っていないに等しい」
>
> 式が違っても、比は等しくなります。
馬鹿。
> >956
> >> x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
> この書き方では3組のx,y,zが同じものなのか別のものなのかわからない
> 同じものならば比が等しいのは当たり前で何も言っていないに等しい
> 違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に7,8,15を代入したものは比が等しくない
> どちらにしても間違っている
>
> >「同じものならば比が等しいのは当たり前で何も言っていないに等しい」
>
> 式が違っても、比は等しくなります。
馬鹿。
969132人目の素数さん
2020/01/16(木) 09:14:15.82ID:Y47r3R5f 間違いを強弁するのはもうやめろ。
970132人目の素数さん
2020/01/16(木) 09:16:24.78ID:Y47r3R5f >>964
> >957
> >違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
>
> 「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
>
> 当然です。
その等しくないものを日高が同じと主張してるのだろうが。嘘つきが。
> >957
> >違うものならば例えば最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない
>
> 「最初の式に3,4,5を代入したものと2番目の式に8,15,17を代入したものは比が等しくない」
>
> 当然です。
その等しくないものを日高が同じと主張してるのだろうが。嘘つきが。
971日高
2020/01/16(木) 09:19:44.10ID:D8HUqGB2 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
972日高
2020/01/16(木) 09:20:47.82ID:D8HUqGB2 【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
したがって、x^2×1=(z+y)(z-y)のみを考える。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
したがって、x^2×1=(z+y)(z-y)のみを考える。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
973日高
2020/01/16(木) 09:25:17.69ID:D8HUqGB2 例.
x^2*1=(z+y)(z-y)…(1)
1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
x=5/3、y=8/9、z=17/9となる。
x^2/9*9=(z+y)(z-y)…(2)
9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
x=15、y=8、z=17となる。
(1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
x^2*1=(z+y)(z-y)…(1)
1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
x=5/3、y=8/9、z=17/9となる。
x^2/9*9=(z+y)(z-y)…(2)
9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
x=15、y=8、z=17となる。
(1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
974132人目の素数さん
2020/01/16(木) 09:34:13.41ID:Y47r3R5f >>971
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
指摘無視
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
指摘無視
975132人目の素数さん
2020/01/16(木) 09:34:30.69ID:Y47r3R5f >>971
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
ごまかし嘘つき
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
ごまかし嘘つき
976132人目の素数さん
2020/01/16(木) 09:34:52.45ID:Y47r3R5f >>973
> 例.
> x^2*1=(z+y)(z-y)…(1)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
> x^2/9*9=(z+y)(z-y)…(2)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
> (1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
痴呆老人
> 例.
> x^2*1=(z+y)(z-y)…(1)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
> x^2/9*9=(z+y)(z-y)…(2)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
> (1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
痴呆老人
977132人目の素数さん
2020/01/16(木) 09:38:15.74ID:UCL9+mvh978日高
2020/01/16(木) 09:50:51.02ID:D8HUqGB2 >977
>とりあえずp=2について、
どんなピタゴラス数も、適当な数で割ることにより、
1=(z-y)
にできるって事だよね。
それってすごい事なのかなあ?
すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
>とりあえずp=2について、
どんなピタゴラス数も、適当な数で割ることにより、
1=(z-y)
にできるって事だよね。
それってすごい事なのかなあ?
すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
979132人目の素数さん
2020/01/16(木) 11:00:23.51ID:b5IBvfX/ >>978
> >977
> >とりあえずp=2について、
> どんなピタゴラス数も、適当な数で割ることにより、
> 1=(z-y)
> にできるって事だよね。
> それってすごい事なのかなあ?
>
> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
簡単になってません。
> >977
> >とりあえずp=2について、
> どんなピタゴラス数も、適当な数で割ることにより、
> 1=(z-y)
> にできるって事だよね。
> それってすごい事なのかなあ?
>
> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
簡単になってません。
980132人目の素数さん
2020/01/16(木) 11:02:42.92ID:b5IBvfX/ 根拠なしに嘘を強弁するのはもうやめろ。
981日高
2020/01/16(木) 11:27:06.28ID:D8HUqGB2 >979
>> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
簡単になってません。
x^2=2y+1のxに、任意の有理数を代入すればよいです。
>> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
簡単になってません。
x^2=2y+1のxに、任意の有理数を代入すればよいです。
982日高
2020/01/16(木) 11:29:49.65ID:D8HUqGB2 >980
>根拠なしに嘘を強弁するのはもうやめろ。
根拠は、あります。
>根拠なしに嘘を強弁するのはもうやめろ。
根拠は、あります。
983日高
2020/01/16(木) 11:31:25.05ID:D8HUqGB2 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
984日高
2020/01/16(木) 11:32:14.86ID:D8HUqGB2 【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
したがって、x^2×1=(z+y)(z-y)のみを考える。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
したがって、x^2×1=(z+y)(z-y)のみを考える。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
985日高
2020/01/16(木) 11:33:12.57ID:D8HUqGB2 例.
x^2*1=(z+y)(z-y)…(1)
1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
x=5/3、y=8/9、z=17/9となる。
x^2/9*9=(z+y)(z-y)…(2)
9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
x=15、y=8、z=17となる。
(1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
x^2*1=(z+y)(z-y)…(1)
1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
x=5/3、y=8/9、z=17/9となる。
x^2/9*9=(z+y)(z-y)…(2)
9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
x=15、y=8、z=17となる。
(1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
986132人目の素数さん
2020/01/16(木) 12:01:26.00ID:b5IBvfX/ >>981
> >979
> >> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
> 簡単になってません。
>
> x^2=2y+1のxに、任意の有理数を代入すればよいです。
簡単になってないじゃん。過去の指摘通り。嘘つき。
> >979
> >> すごい事ではありませんが、ピタゴラス数の計算が、簡単になります。
> 簡単になってません。
>
> x^2=2y+1のxに、任意の有理数を代入すればよいです。
簡単になってないじゃん。過去の指摘通り。嘘つき。
987132人目の素数さん
2020/01/16(木) 12:03:18.71ID:b5IBvfX/ >>982
> >980
> >根拠なしに嘘を強弁するのはもうやめろ。
>
> 根拠は、あります。
過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
> >980
> >根拠なしに嘘を強弁するのはもうやめろ。
>
> 根拠は、あります。
過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
988132人目の素数さん
2020/01/16(木) 12:03:28.91ID:b5IBvfX/ >>983
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
ゴミ
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
> z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
ゴミ
989132人目の素数さん
2020/01/16(木) 12:03:38.10ID:b5IBvfX/ >>984
> 【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
> 【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
> x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
> したがって、x^2×1=(z+y)(z-y)のみを考える。
> x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
> x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
> ∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
ゴミ
> 【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
> 【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
> x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
> したがって、x^2×1=(z+y)(z-y)のみを考える。
> x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
> AB=CDならば、B=Dのとき、A=Cとなる。
> 1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
> x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
> ∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
ゴミ
990132人目の素数さん
2020/01/16(木) 12:03:47.09ID:b5IBvfX/ >>985
> 例.
> x^2*1=(z+y)(z-y)…(1)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
> x^2/9*9=(z+y)(z-y)…(2)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
> (1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
ゴミ
> 例.
> x^2*1=(z+y)(z-y)…(1)
> 1=(z-y)、x^2=(z+y)より、x^2=2y+1となる。
> x=5/3、y=8/9、z=17/9となる。
> x^2/9*9=(z+y)(z-y)…(2)
> 9=(z-y)、x^2/9=(z+y)より、x^2=18y+81となる。
> x=15、y=8、z=17となる。
> (1)、(2)は、x:y:z=5/3:8/9:17/9=15:8:7となる。
ゴミ
991132人目の素数さん
2020/01/16(木) 13:38:39.42ID:oCDhp7+B 「となる」の意味、間違えているよ。
992132人目の素数さん
2020/01/16(木) 14:26:40.00ID:b7/ZE+wi993132人目の素数さん
2020/01/16(木) 16:20:28.84ID:MhHdUDUO 日高っち!ガンガレ〰!
994日高
2020/01/16(木) 18:01:23.04ID:D8HUqGB2 >991
>「となる」の意味、間違えているよ。
正しい言い方を教えていただけないでしょうか。
>「となる」の意味、間違えているよ。
正しい言い方を教えていただけないでしょうか。
995日高
2020/01/16(木) 18:08:15.97ID:D8HUqGB2 >992
>> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
ここの証明は?
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}を満たす有理数は、
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=(x^p+y^p)/(x+y)なので、(x,y)=(0,1)、(x,y)=(1,0)
(x,y)=(1,1)のみである。
(x,y)=(1,1)は、z^p=(x+y)を満たさない。
>> 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
ここの証明は?
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}を満たす有理数は、
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=(x^p+y^p)/(x+y)なので、(x,y)=(0,1)、(x,y)=(1,0)
(x,y)=(1,1)のみである。
(x,y)=(1,1)は、z^p=(x+y)を満たさない。
996日高
2020/01/16(木) 18:10:57.65ID:D8HUqGB2 >986
>> x^2=2y+1のxに、任意の有理数を代入すればよいです。
簡単になってないじゃん。過去の指摘通り。嘘つき。
これより、簡単な方法があるでしょうか?
>> x^2=2y+1のxに、任意の有理数を代入すればよいです。
簡単になってないじゃん。過去の指摘通り。嘘つき。
これより、簡単な方法があるでしょうか?
997日高
2020/01/16(木) 18:17:23.95ID:D8HUqGB2 >987
>> >根拠なしに嘘を強弁するのはもうやめろ。
>
> 根拠は、あります。
過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
984番を見て下さい。
>> >根拠なしに嘘を強弁するのはもうやめろ。
>
> 根拠は、あります。
過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
984番を見て下さい。
998132人目の素数さん
2020/01/16(木) 18:44:53.40ID:b5IBvfX/ >>997
> >987
> >> >根拠なしに嘘を強弁するのはもうやめろ。
> >
> > 根拠は、あります。
> 過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
>
> 984番を見て下さい。
根拠になってない。以上。ゴミ。
> >987
> >> >根拠なしに嘘を強弁するのはもうやめろ。
> >
> > 根拠は、あります。
> 過去根拠が示されたことはない。全て日高の思い込みのみ。結果が正しかろうが間違っていようが、根拠なし。嘘つき。
>
> 984番を見て下さい。
根拠になってない。以上。ゴミ。
999132人目の素数さん
2020/01/16(木) 18:45:35.77ID:b5IBvfX/ >>996
> >986
> >> x^2=2y+1のxに、任意の有理数を代入すればよいです。
> 簡単になってないじゃん。過去の指摘通り。嘘つき。
>
> これより、簡単な方法があるでしょうか?
過去指摘されてた。無視した訳だな。
> >986
> >> x^2=2y+1のxに、任意の有理数を代入すればよいです。
> 簡単になってないじゃん。過去の指摘通り。嘘つき。
>
> これより、簡単な方法があるでしょうか?
過去指摘されてた。無視した訳だな。
1000132人目の素数さん
2020/01/16(木) 18:47:13.12ID:b5IBvfX/10011001
Over 1000Thread このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 27日 2時間 55分 54秒
新しいスレッドを立ててください。
life time: 27日 2時間 55分 54秒
10021002
Over 1000Thread 5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
レス数が1000を超えています。これ以上書き込みはできません。
ニュース
- 中国が日本に対し輸出規制強化 レアアース含む軍民両用品 “高市発言”への対抗措置 ★3 [首都圏の虎★]
- 原子力規制庁の職員が中国・上海で業務用スマホ紛失 国の個人情報保護委員会に報告 [ぐれ★]
- 「1月8日に強制送還」クリスマス直前、父親に届いた通知 子どもへの「在留許可特例」が家族を引き離す:東京新聞 [少考さん★]
- 高市首相「日本の底力信じる」 昭和100年に触れ [少考さん★]
- スマイリーキクチ 高校暴力動画の拡散に警鐘「私刑は〝正義〟ではなく〝制裁〟、加害者側です」 [少考さん★]
- 【ベネズエラ攻撃】「ベネズエラ人はトランプ米大統領に感謝している」ノーベル平和賞のマチャド氏 [ぐれ★]
- 【高市危機】中国、日本へのレアアース輸出制限か。禁輸リストにレアアースも含まれる★4 [237216734]
- 【実況】博衣こよりのえちえちKoZMy -JSP2-🧪⚒☃★2
- 【画像】住宅ローン金利上昇でバブル崩壊!東京の板橋駅徒歩14分の新築戸建がたったの3980万円(桁間違えなし)、急げ! [881878332]
- 未解決事件File.09🏡世田谷一家殺害事件🈖🈑🈞
- 【高市悲報】家賃滞納で一家心中か [377482965]
- 高市総理「経済団体は、強い経済を作りましょうよ!次の世代への責任を果たしましょうよ!私と一緒に戦ってください!」 [256556981]
