>285
>元の
z^p=(2x+5y)(x+3y)
は(少なくとも)4パターンから導かれた4組の解を
解として持つ。
其れを導くためには場合分けが必要だ。
>其の証拠に、パターン同士で解が異なるであろう。

z^p=(2x+5y)(x+3y)は、z=2、p=3としても、x,yを特定することは、出来ません。
しかし、
4*2=(2x+5y)(x+3y)、8*1=(2x+5y)(x+3y)とすると、二元連立方程式なので、x,yを特定することが出来ます。
x,yは、異なりますが、4*2と8*1は、同じ整数です。