【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})^p…Cとなる。
➂の右辺に、a(1/a)を掛けるとr^(p-1){(y/r)^p-1}=pa{x^(p-1)+…+r^(p-2)x}(1/a)…Dとなる。a(1/a)=1となる。
r^(p-1)=p以外の場合は、r^(p-1)=paとなるので、Aはx^p+y^p=(x+(ap)^{1/(p-1)})^p…Eとなる。
EをX^p+Y^p=(X+(pa)^{1/(p-1)})^pとおくと、EはCの定数倍となるので、X:Y:Z=x:y:zとなる。
Cはxを有理数とすると、zは無理数となる。よって、E,C,A,@は有理数解を持たない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。