【定理】pが2のとき、x^p+y^p=z^pは、自然数解を持たない。
【日高の証明】pは2、x,y,zは有理数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^p{(y/r)^p-1}=p{x^(p-1)r+…+r^(p-1)x}…Bとする。
Bはr^p=pとすると、r=p^{1/p}となるので、Aはx^p+y^p=(x+p^{1/p})^p…Cとなる。
Cはp^{1/p}が無理数なので、zは無理数となる。よって、Cは有理数解を持たない。
Bの右辺に、a(1/a)を掛けるとr^p{(y/r)^p-1}=pa{x^(p-1)r+…+r^(p-1)x}(1/a)…Dとなる。a(1/a)=1となる。
r^p=p以外の場合は、r^p=paとなるので、AはX^p+Y^p=(X+(pa)^{1/p})^p…Eとなる。
EのX,Y,ZはCのx,y,zのa^{1/p}倍となるので、X:Y:Z=x:y:zとなる。よって、Eも有理数解を持たない。
∴pが2のとき、x^p+y^p=z^pは、自然数解を持たない。