>>1の論法を使うとこういう証明ができるよね

【定理】x^3+y^3+z^3=w^3は自然数解を持たない。
【証明】w=x+rとおくと、x^3+y^3+z^3=(x+r)^3となる。
これを変形すると、r^2{(y/r)^3+(z/r)^3-1}=3(x^2+rx)となる。
r^2=3となるので、xを有理数とすると、wは無理数となる。
∴x^3+y^3+z^3=w^3は自然数解を持たない。

実際には 3^3+4^3+5^3=6^3 という自然数解が存在するんだけど、
さていったい上の証明はどこが間違ってるんでしょうかねえ?