pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
x^p+y^p=z^pをz=x+rとおいて、x^p+y^p=(x+r)^pとする。
r=p^{1/(p-1)}となるので、x^p+y^p=(x+p^{1/(p-1)})^p=z^pとなる。
xを有理数とすると、zは無理数となる。
∴x^p+y^p=z^pは自然数解を持たない。
探検
フェルマーの最終定理の簡単な証明
■ このスレッドは過去ログ倉庫に格納されています
1日高
2019/09/23(月) 09:33:36.12ID:HXbAy1I+2019/09/23(月) 09:50:21.96ID:VWfXQ97t
ファルマーの冒険って小説なかったっけ?
3日高
2019/09/23(月) 10:22:04.56ID:HXbAy1I+ どこか、
おかしいところが、あるでしょうか?
おかしいところが、あるでしょうか?
2019/09/23(月) 10:52:20.95ID:VWfXQ97t
>r=p^{1/(p-1)}となるので
なんで?
なんで?
5日高
2019/09/23(月) 12:05:14.99ID:HXbAy1I+ x^p+y^p=(x+r)^pの両辺をr^pで割る。
(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
2019/09/23(月) 12:46:00.20ID:MpXoKD+u
(y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
はなぜですか?
はなぜですか?
7日高
2019/09/23(月) 13:24:40.70ID:HXbAy1I+ わかりやすく、p=3の場合で計算します。
(y/r)^3-1=3{(x/r)^2+x/r}, r^2{(y/r)^3-1}=3(x^2+rx),
r^2=3とすると、r=3^(1/2)となります。
(y/r)^3-1=3{(x/r)^2+x/r}, r^2{(y/r)^3-1}=3(x^2+rx),
r^2=3とすると、r=3^(1/2)となります。
2019/09/23(月) 15:08:16.60ID:MpXoKD+u
p=4の時はどうなりますか?
9日高
2019/09/23(月) 15:22:43.21ID:HXbAy1I+ r=4^(1/3)となります。
2019/09/23(月) 15:25:39.37ID:MpXoKD+u
(y/r)^p-1=p{(x/r)^(p-1)+...+x/r},
この計算をp=4の場合にもしていただきたいです
この計算をp=4の場合にもしていただきたいです
11日高
2019/09/23(月) 16:49:51.72ID:HXbAy1I+ p=4は、奇素数ではないので、p=5でやります。
(y/r)^5-1=5{(x/r)^(5-1)+...+x/r},
r^(5-1){(y/r)^5-1}=5(x^(5-1)+...+r^(5-2)x},
r^(5-1)=5とすると、r=5^{1/(5-1)}となります。
(y/r)^5-1=5{(x/r)^(5-1)+...+x/r},
r^(5-1){(y/r)^5-1}=5(x^(5-1)+...+r^(5-2)x},
r^(5-1)=5とすると、r=5^{1/(5-1)}となります。
12132人目の素数さん
2019/09/23(月) 16:53:14.21ID:MpXoKD+u (x+y)^5計算してみてください
そのあと、x=y=1としてみてください
そのあと、x=y=1としてみてください
13日高
2019/09/23(月) 17:28:26.90ID:HXbAy1I+ (x+y)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5,
=1+5+10+10+5+1
=32
となります。
=1+5+10+10+5+1
=32
となります。
14132人目の素数さん
2019/09/25(水) 01:23:26.97ID:AhdwTfQA >>5
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
ここが理解できない。
r^(p-1)=pとなぜ仮定しちゃってるんですか??
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x}
の左辺は有理数×有理数という形になっているので、掛け合わしてる数のいずれかは素数の倍数になるという整数の性質は使えないと思うのですが。
違う論法なんですかね。
ちょっと解説を。
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x},
r^(p-1)=pとすると、r=p^{1/(p-1)}となります。
ここが理解できない。
r^(p-1)=pとなぜ仮定しちゃってるんですか??
r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x}
の左辺は有理数×有理数という形になっているので、掛け合わしてる数のいずれかは素数の倍数になるという整数の性質は使えないと思うのですが。
違う論法なんですかね。
ちょっと解説を。
15日高
2019/09/25(水) 06:19:18.74ID:rZG/71Kx 言われていることの意味は、例えば、
(4/3)*6=2*4という事でしょうか?
(4/3)*6=2*4という事でしょうか?
16132人目の素数さん
2019/09/25(水) 21:41:41.34ID:rZG/71Kx 「r^(p-1){(y/r)^p-1}=p(x^(p-1)+...+r^(p-2)x}
の左辺は有理数×有理数という形になっているので」
左辺は有理数×有理数とは限りません。
の左辺は有理数×有理数という形になっているので」
左辺は有理数×有理数とは限りません。
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- BreakingDown 前日会見で対戦予定選手から不意打ちビンタ→後頭部強打で失神した選手、くも膜下出血と報告「脳内に出血が発見され…★2 [Anonymous★]
- フィンランド、ミスや国会議員つり目投稿 くり返されるアジア人差別 [蚤の市★]
- 中国国防省が再反論 SNSで公開した音声とは“別の通報”で日本に訓練の時間や海域を通報したと主張★2 [夜のけいちゃん★]
- コメ「余っている」年明けに下落も? 大量の在庫が倉庫を圧迫、赤字の恐れ…業者「値下げするしか…」 ★3 [Hitzeschleier★]
- 【海外/米国】トランプ大統領、合成麻薬フェンタニルを大量破壊兵器に指定 [あずささん★]
- ウクライナ国民、63%が「必要なだけ耐える」 戦争長期化を覚悟 [煮卵★]
- 赤坂高級サウナ火事2人死亡、サウナ室のドアノブ外れ死か [256556981]
- 【ネトウヨ悲報】女が大嫌いなケンモメン、テストでとんでもない解答をしてしまいドン引きされ0点になるwwwwwww [856698234]
- 田舎者「大阪は都会」大阪人「大阪は都会」東京人「大阪は田舎」
- 1年後おれら「ったくあのメモリの異常高騰なんだったんよ。慌てて買うんじゃなかった」 可能性ある? [531674905]
- 【悲報】不意打ちビンタ食らった人、くも膜下出血でガチでやばいもよう😭
- これは打ち込み感ある曲だろうか?
