>>494
{n,k}:n組み(=2n人)のペアのうち、k組のペアが隣り合う並び方(の数)   とすると、
{n,k} = {n-1,k+2}*(k+2)*(k+1)
+ {n-1,k+1}*(k+1)*((2n-1)-(k+1))*2
+ {n-1,k}*((2n-1)-k)*((2n-1)-k-1)
+ {n-1,k}*k*2
+ {n-1,k-1}*((2n-1)-(k-1))*2
のような、関係式が成立します。

{1,1}=2,{1,0}=0
{2,2}={1,1}*2*1+{1,1}*1*2+{1,0}*2*2=8     ;    としてもよいが、2!*2^2=8の方が楽
{2,1}={1,1}*2*1+{1,1}*1*2+{1,0}=8,
{2,0}={1,1}*1*2*2+{1,0}*...=8
{3,3}=3!*2^3=48
{3,2}={2,2}*3*2+{2,2}*2*2+{2,1}*4*2=48+32+64=144
{3,1}={2,2}*2*3*2+{2,1}*4*3+{2,1}*1*2+{2,0}*5*2=288
{3,0}={2,2}*2*1+{2,1}*1*4*2+{2,0}*5*4+{2,0}*0*2=240

{4,0}={3,2}*2*1+{3,1}*1*6*2+{3,0}*7*6+{3,0}*0*2=13824
13824/8!=12/35