>>397 つづき
<引用>
http://www.unirioja.es/cu/jvarona/downloads/Differentiability-DA-Roth.pdf
DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION,
DIOPHANTINE APPROXIMATION,
AND A REFORMULATION
OF THE THUE-SIEGEL-ROTH THEOREM
JUAN LUIS VARONA
This paper has been published in Gazette of the Australian Mathematical Society, Vol-
ume 36, Number 5, November 2009, pp. 353{361.
Received 29 February 2008; accepted for publication 6 October 2009.
(抜粋)

ここに
fν(x)
=0 if x ∈ R - Q(無理数)
=1/q^ν if x = p/q ∈ Q, irreducible (有理数で既約分数)


Theorem 1. For ν > 2, the function fν is discontinuous (and consequently not differentiable) at the rationals, and continuous at the irrationals.
With respect the differentiability, we have:
(a) For every irrational number x with bounded elements in its continued fraction expansion, fν is differentiable at x.
(b) There exist infinitely many irrational numbers x such that fν is not differentiable at x.
Moreover, the sets of numbers that fulfill (a) and (b) are both of them un-countable.
(引用終り)