X



トップページ数学
270コメント82KB
1文字変えたら難易度が激変する問題 3文字目 [無断転載禁止]©2ch.net
0220132人目の素数さん垢版2021/11/02(火) 21:22:58.92ID:la8IjbBZ
[Hard] 1,2,4の3種類の数字を横一列にn個(nは3以上の整数)並べて出来るn桁の整数のうち、49の倍数はいくつあるか?但し1,2,4は少なくとも1回は用いる。

[Easy] 1,2,4の3種類の数字を横一列にn個(nは3以上の整数)並べて出来るn桁の整数のうち、4の倍数はいくつあるか?但し1,2,4は少なくとも1回は用いる。
0222132人目の素数さん垢版2021/11/05(金) 20:49:50.53ID:MO5Kof3j
>>220
[Easy] 値を求めることはできる
 下2桁が12で、上の桁に4を含む  …… 3^(n-2) - 2^(n-2)
 下2桁が24で、上の桁に1を含む  …… 3^(n-2) - 2^(n-2)
 下2桁が44で、上の桁に1,2を含む …… 3^(n-2) - 2・2^(n-2) + 1,
これを合計すれば一般式を出せるだろうが…
 3^(n-1) - (2^n) + 1,
0226132人目の素数さん垢版2022/02/14(月) 20:45:40.39ID:rUDVwSgL
[Lunatic] r=p^3+4q^3-32とする。p,q,rが全て素数であるような(p,q)の組み合わせを全て求めよ。  
[Easy] r=p^3+3q^3-32とする。p,q,rが全て素数であるような(p,q)の組み合わせを全て求めよ。
0228132人目の素数さん垢版2022/03/02(水) 19:45:10.58ID:rWMw7QhA
[Hard] 平城君が1頭の鹿に以下の指示を与えて運動させている。
・平城君が表と裏が何れも確率1/2で出る鹿せんべいを投げる。
・裏が出た場合は鹿は動かず待機する。
・表が出た場合は、 (この回自体も含めて) それまでに裏の出た回数を3で割った余りkに対して鹿は次の「kノ型」の運動をする。
 ・「0ノ型」東に20m走る
 ・「1ノ型」西に10m、北に17m走る
 ・「2ノ型」西に10m、南に17m走る
平城君が鹿せんべいを20回投げて鹿がそれに応じた運動を終えたとき、鹿せんべいを投げる前のはじめの地点に鹿が戻っている確率を求めよ。

[Easy] 平城君が1頭の鹿に以下の指示を与えて運動させている。
・平城君が表と裏が何れも確率1/2で出る鹿せんべいを投げる。
・裏が出た場合は鹿は動かず待機する。
・表が出た場合は、 (この回自体も含めて) それまでに表の出た回数を3で割った余りkに対して鹿は次の「kノ型」の運動をする。
 ・「0ノ型」東に20m走る
 ・「1ノ型」西に10m、北に17m走る
 ・「2ノ型」西に10m、南に17m走る
平城君が鹿せんべいを20回投げて鹿がそれに応じた運動を終えたとき、鹿せんべいを投げる前のはじめの地点に鹿が戻っている確率を求めよ。
0229132人目の素数さん垢版2022/03/05(土) 21:47:24.48ID:Yggdk8l8
[Hard] 点Pが、座標平面上の点(0,0),(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2),(1,2),(3,2),(0,3),(1,3),(2,3),(3,3),(1,4),(3,4)の何れかを運動する。1回の移動で、x軸方向に+1または-1、あるいはy軸方向に+1または-1移動する。点(0,0)からスタートして、9回目の移動で初めてゴールの(3,4)に到達する移動の仕方は何通りか?
[Easy] 点Pが、座標平面上の点(0,0),(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2),(1,2),(3,2),(0,3),(1,3),(2,3),(3,3),(1,4),(3,4)の何れかを運動する。1回の移動で、x軸方向に+1または-1、あるいはy軸方向に+1または-1移動する。点(0,0)からスタートして、7回目の移動で初めてゴールの(3,4)に到達する移動の仕方は何通りか?
0230132人目の素数さん垢版2022/03/26(土) 21:45:31.45ID:t5ho5kYu
[Hard] xについての方程式tanx=xの正の実数解を小さい順にa_1<a_2<a_3<…とする。\sum_{k=1}^{+∞} 1/a_k^2を求めよ。
[Easy] xについての方程式tanx=0の正の実数解を小さい順にa_1<a_2<a_3<…とする。\sum_{k=1}^{+∞} 1/a_k^2を求めよ。
0232132人目の素数さん垢版2022/07/07(木) 12:07:05.68ID:lF9/ME5M
このスレも20周年か
実質何人くらいで維持してきたんだろう


-------------------------------------------

1文字変えたら難易度が激変する問題



1 :132人目の素数さん :02/04/13 13:30

いろいろ作れそうですが、センスを感じるもの希望

-------------------------------------------
0233132人目の素数さん垢版2022/07/10(日) 08:26:27.06ID:FFW7XbY7
有名ですが…121回数検1級とか
x^14 + x^7 + 1 を係数が整数の範囲で因数分解しなさい。
x^14 + x^7 + 1 を係数が実数の範囲で因数分解しなさい。

実数なら高校範囲でゴリ押せるけど整数だと難易度めっちゃ上がる気がする…
0236132人目の素数さん垢版2022/10/27(木) 21:45:20.99ID:fICpIOQy
[Hard] 円x^2+(y-1)^2=2のy≧0の部分を、x軸周りに1回転させて出来る立体の体積を求めよ。
[Easy] 円x^2+(y-0)^2=2のy≧0の部分を、x軸周りに1回転させて出来る立体の体積を求めよ。
0237132人目の素数さん垢版2022/10/27(木) 21:45:37.83ID:fICpIOQy
[Hard] ∫^{1}_{3^{+1}} 1/\sqrt{|x(2-x)|} dxを求めよ。
[Easy] ∫^{1}_{3^{-1}} 1/\sqrt{|x(2-x)|} dxを求めよ。
0239132人目の素数さん垢版2023/01/10(火) 21:01:39.40ID:pHKYAW6x
[Hard] f(x)=x^3-20005xとする。a<b<c且つf(a)>f(b)>f(c)を満たす正の整数の組(a,b,c)はいくつあるか?
[Easy] f(x)=x^2-20005xとする。a<b<c且つf(a)>f(b)>f(c)を満たす正の整数の組(a,b,c)はいくつあるか?
0240132人目の素数さん垢版2023/02/27(月) 21:24:21.65ID:ePq8wQVn
[Hard] (1/π)arccos(1/p)が有理数となる3以上の素数pは存在するか?
[Trivial] (1/π)arccos(1/p)が有理数となる2以上の素数pは存在するか?
0241132人目の素数さん垢版2023/02/27(月) 21:35:15.73ID:ePq8wQVn
[Hard] "1"、"√3"、"i"、"i√3"、"1+i√3"、"√3+i"の目が等確率1/6で出るサイコロをn回投げ、出た目の積をz_nとする。|z_n|<5^9となる確率を求めよ。
[Easy] "1"、"√3"、"i"、"i√3"、"1+i√3"、"√3+i"の目が等確率1/6で出るサイコロをn回投げ、出た目の積をz_nとする。|z_n|<5^1となる確率を求めよ。
0242132人目の素数さん垢版2023/03/01(水) 19:22:44.02ID:48k0iPgj
[Hard] 1/[2×9^(1/3)+3^(1/2)+5]の分母を有理化せよ。
[Easy] 1/[2×9^(1/3)+3^(1/3)+5]の分母を有理化せよ。
0243132人目の素数さん垢版2023/03/10(金) 21:15:30.04ID:+czhDGJi
[Hard] θ=30°とする。x軸を軸とする半径2の円柱から「|y|<1且つ|z|<1」で表される角柱の内部を取り除いた立体をAとする。Aをx軸周りにθ/2回転してからz軸周りにθ回転した立体をBとする。AとBの共通部分の体積を求めよ。
[Easy] θ=90°とする。x軸を軸とする半径2の円柱から「|y|<1且つ|z|<1」で表される角柱の内部を取り除いた立体をAとする。Aをx軸周りにθ/2回転してからz軸周りにθ回転した立体をBとする。AとBの共通部分の体積を求めよ。
0244132人目の素数さん垢版2023/03/29(水) 17:20:28.56ID:qqdhxAUT
[Hard] \int^{2023}_0 2/(x+e^x) dxの整数部分を求めよ。
[Easy] \int^{2023}_0 1/(x+e^x) dxの整数部分を求めよ。
0245132人目の素数さん垢版2023/04/03(月) 07:10:30.09ID:yDIDmN/Q
[Hard] 球に内接する体積最大の5面体を求めよ。
[Easy] 球に内接する体積最大の4面体を求めよ。
0246132人目の素数さん垢版2023/05/27(土) 23:48:24.75ID:T/l+9rmx
[Hard] \int^3_{-3} |x^4-2x^2+x+3|dxを求めよ。
[Easy] \int^3_{-3} |x^4-2x^2+x^2+3|dxを求めよ。
0247132人目の素数さん垢版2023/07/02(日) 09:52:58.21ID:jxMwUqB3
ランダムな整数係数をもつ多項式が既約である確率を求めよ。
0250132人目の素数さん垢版2023/10/17(火) 02:53:47.58ID:JXd4ceYU
あら、さすが庶民ですわね。このような所にわたくしが座れるとおもって?
0251132人目の素数さん垢版2023/11/16(木) 22:05:25.39ID:JIJaamcD
[Hard] x^{100} - 3x^{10}-2x-1=0の区間-2≦x≦3内の実数解の個数を求めよ。
[Easy] x^{100} - 3x^{10}-2x-1=0の区間 2≦x≦3内の実数解の個数を求めよ。
0252132人目の素数さん垢版2023/11/29(水) 22:11:39.91ID:bc9MzPP1
[Lunatic] p^q-q^p=rを満たす素数(p,q,r)の組を全て求めよ。
[Easy] p^q+q^p=rを満たす素数(p,q,r)の組を全て求めよ。
0255prime_132垢版2024/01/14(日) 17:55:09.25ID:CqEp4LUI
>>234
∫ (1+tan x) dx = x - log(cos x),
∫ 1/(1+tan x) dx = ∫ cos x /(cos x + sin x) dx
 = (1/2)∫ {1 + (-sin x + cos x)/(cos x + sin x) } dx
 = (1/2) (x + log(cos x + sin x) )

>>235
∫ 1/(1+e^x) dx = ∫ {1 - e^x /(1+e^x)} dx
 = x - log(1+e^x),
∫ x^2 / (1+e^x) dx = ∫ x^2*e^(-x) /(1+e^(-x)) dx
 = - x^2 log(1+e^(-x)) + 2 x Li_2{-e^(-x)} + 2 Li_3{-e^(-x)},
   ↑部分積分を繰り返す
>>237
∫^{1}_^{a} 1/sqrt{|x(2-x)|} dx
 = arcsin(a-1)    1≦a≦2,
 = (π/2) + 2*log(sqrt{a}+sqrt{a-2}) - log(2), a≧2,

>>242
1/[2*9^(1/3) + 3^(1/3) + 5] = [19 + 7*3^(1/3) - 9*3^(2/3)] /110,
1/[2*9^(1/3) + 3^(1/2) + 5] = [1109 + 222*3^(1/6) + 726*3^(1/3) + 59*3^(1/2) - 488*3^(2/3) - 234*3^(5/6)] /10078,
0256prime_132垢版2024/01/14(日) 19:34:41.47ID:CqEp4LUI
>>241
 √3 または i√3 が出た回数をx,
 1+i√3 または √3 + i が出た回数をy
とすると、求める条件は
 log(√3)*x + log(2)*y < log(5) または 9*log(5).
 log(√3) = 0.549306…
 log(2) = 0.693147…
 log(5) =1.609438…
5 については、合計2回以下となる。 x + y ≦ 2,
 (1/3)^{n} + C[n,1](1/3)^{n-1}*(2/3) + C[n,2](1/3)^{n-2}*(2/3)^{2}

5^9 については、各yに対してxの上限が与えられる。
 y : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
 x : 26,25,23,22,21,20,18,17,16,15, 13, 12, 11, 9, 8, 7, 6, 4, 3, 2, 1.

>>244
 y = log(x) は上に凸だから x=1 で接線を曳くと
 log(x) < x-1,
 0 < x < e^(x-1),
これより
 ∫_0 ^a 1/(x+e^x) dx < ∫_0 ^a e^(-x) dx = 1 - e^(-a) < 1,
 ∫_0 ^a 2/(x+e^x) dx > (2/(1+1/e))∫_0 ^a e^(-x) dx
  = 1.4621…{1 - e^(-a)} > 1,
ここで
 e^(-2023) = 2.644…*10^(-879) << 1
0257prime_132垢版2024/01/14(日) 20:11:12.44ID:CqEp4LUI
>>233
(x^2 +x+1)*(x^12 -x^11 +x^9 -x^8 +x^6 -x^4 +x^3 -x+1),

x^7 + 1 + x^(-7) = (x + 1 + 1/x)*{x^6 -x^5 +x^3 -x^2 +1 -x^(-2) +x^(-3) -x^(-5) +x^(-6)}
= (t+1)*(t^6 - t^5 - 6t^4 + 6t^3 + 8t^2 - 8t + 1)
= (t+1) {(t-2)(t-1)t(t+2)(t^2 -2) + 1},
t = x + 1/x.
0258prime_132垢版2024/01/17(水) 01:14:36.20ID:hscf/bf2
>>225
[Easy]
 x = {(x^2 -1)/2} ' により部分積分して
∫ log(1+x)*x dx = log(1+x)*(x^2 -1)/2 - ∫ (x-1)/2 dx
  = log(1+x)*(x^2 -1)/2 - (x-1)^2 /4,
 [0,1] では 1/4.

[Hard]
マクローリン展開で
 log(1+x) /x = Σ[k=1,∞] (1/k)*(-x)^{k-1},
∫ log(1+x) /x dx = Σ[k=1,∞] (-1)^{k-1} (x^k)/kk,
 [0,1] では (1 - 1/2)ζ(2) = (π^2)/12 = 0.8224670

これら積分の相乗平均は π/(4√3) = 0.45344984 である。
一方、相乗平均の積分は
∫ log(1+x) dx = (1+x)*log(1+x) - x より,
 2*log(2) - 1 = 0.38629436
0259132人目の素数さん垢版2024/01/17(水) 02:47:30.85ID:hscf/bf2
>>245
球の半径 R=1とします。

[Easy] 正4面体とすると
 1辺の長さa 4/√6,
 各面の面積S 2/√3,
 高さh   4/3,
 体積V   8/(9√3) = 0.5132
 https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1258853022

[Hard] 正3角柱とすると
 正3角形の一辺の長さa √2,
 正3角形の面積S (√3)/2,
 高さh 2/√3,
 体積V 1.
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13274146463
0260prime_132垢版2024/01/17(水) 20:34:56.67ID:hscf/bf2
補足
[Easy]
 もし a角形の面と他の頂点があると、(a+1)面体(以上)になる。
 ∴ 4面体の各面は3角形に限る。4頂点をABCDとする。

 体積V = (1/3)*(僊BCの面積)*(頂点Dの高さ),
ここで、高さの基準は ABC平面です。

いま、僊BCを固定し、頂点Dを動かしてみる。
 外接球の中心OからABC面に垂線OHを下ろす。
 OA=OB=OC より AH=BH=CH, ∴ HはABCの外心。
 HOの延長線と球面の交点をPとする。 AP=BP=CP,

 ところで
 (頂点Dの高さ) ≦ DH ≦ DO + OH
 = PO + OH = PH = (点Pの高さ),
 よって 体積Vが最大になるのは 頂点DがPにあるとき。
 このとき AD=BD=CD,
 これが4面について言えるから、6稜はすべて等長。
 4面はすべて合同な正3角形で、正4面体となる。 (終)
0261prime_132垢版2024/01/17(水) 21:17:39.20ID:hscf/bf2
>>210
 √5 + 2 = φ^3,
 φ = (√5 + 1)/2 〜 1.618034  (黄金比)
 1/φ = (√5 - 1)/2 〜 0.618034
これを使うと
 (√5 + 2)^n = φ^{3n} = L_{3n} - (-1/φ)^{3n},

L_n = φ^n + (-1/φ)^n     (リュカ数)
0262132人目の素数さん垢版2024/01/19(金) 23:03:38.61ID:8Emk6H+1
[Hard] 5^πは整数か?
[Easy] 2^πは整数か?
0263prime_132垢版2024/01/21(日) 13:09:10.78ID:SkW0HQll
[Easy]
 2^π > 2^3 = 8,
 π < 22/7 (約率) と 2^11 = 2048 < 2187 = 3^7 より
 2^π < 2^{22/7} < 3^2 = 9,
よって整数ではない。
0264prime_132垢版2024/01/21(日) 18:05:36.41ID:SkW0HQll
>>251
[Easy]
 |x| > 1.1 では x^{100} が圧倒的に大きいから
 実数解 0個
[Hard]
 実数解 4個
 -1.0080753102
 -0.8691931251
 -0.5015096784
 1.0191496071
これどうやって見つける? (WolframAlpha ?)

>>252
[Easy]
 (2,3,17)

>>253
[Easy]
 x ≧ 0 では | … | の中身 > 0.
 677/60 ≒ 11.28333.
[Hard]
 | … | の中身が (xx+2x-1)(xx+7x+3)
 0 ≦ x < √2 -1 では | … | の中身 < 0,
 x > √2 -1 では | … | の中身 > 0,
 (951-416√2)/60 ≒ 6.0448
0265prime_132垢版2024/01/22(月) 01:34:50.30ID:7UUiJy43
>>262-263
[Hard]
 π > 311/99 = 3.141414… と
 5^311 = 2.397018…*10^217 > 1.316240…*10^217 = 156^99 より
 5^π > 5^{311/99} > 156,

 π < 355/113 (密率) と
 5^355 = 1.362547…*10^248 < 1.369811…*10^248 = 157^113 より
 5^π < 5^{355/113} < 157,
よって整数ではない。
0267prime_132垢版2024/01/22(月) 20:26:07.58ID:7UUiJy43
>>254
[Hard]
nについての帰納法による。
・n=1 のとき
 1 > e^t,     (t<0)
を u<t<0 で積分すると
 -u > 1 - e^u,   (u<0)
これを x<u<0 で積分すると
 xx/2 > -x -1 + e^x,    (x<0)
∴ 1 + x + xx/2 > e^x > 0. (x<0)
・あるnについて
 1 + Σ[k=1, 2n] t^k / k! > e^t,   (t<0)
が成り立つと仮定する。これを u<t<0 で積分すると
 −Σ[k=1, 2n+1] u^k /k! > 1 - e^u, (u<0)
これを x<u<0 で積分すると
 Σ[k=2, 2n+2] x^k /k! > -x -1 + e^x , (x<0)
∴ 1 + Σ[k=1, 2n+2] x^k /k! > e^x,  (x<0)
∴ n+1 についても上式は成り立つ。 (終)
0268prime_132垢版2024/01/23(火) 00:21:32.33ID:sSGPqeUO
>>236
[Easy]
 半径√2 の球
 体積V = (8π√2)/3 = 11.8476878
[Hard]
 (y≧0 の部分の面積) A = 1 + 3π/2 = 5.71239
 (重心のy)  η = (5/3 + 3π/2)/A = 1.1167054
 体積V = 2πη*A = π(10/3 + 3π) = 40.0808
 体積に関する Guldin の法則
出典
 高木「解析概論」改訂第三版、岩波書店 (1961) §98, p.371

>>246
[Easy]
 x^4 - xx + 3 = (xx - 1/2)^2 + 11/4 ≧ 11/4.
 ∫_{-3}^{3} (x^4 - xx + 3) dx
  = [ (1/5)x^5 - (1/3)x^3 + 3x ]_{-3}^{3}
  = 97.2
[Hard]
 | … | 内 ≧ 0.943827115
  等号は x ≒ -1.1071598717 のとき。
 ∫_{-3}^{3} (x^4 - 2xx + x + 3) dx
  = [ (1/5)x^5 - (2/3)x^3 + xx/2 + 3x ]_{-3}^{3}
  = 79.2
0269prime_132垢版2024/01/23(火) 03:53:50.43ID:sSGPqeUO
>>235 >>255
 f(x) が偶関数のとき
 ∫[-a,a] f(x)/(1+e^x) dx
 = ∫[0,a] {f(x)/(1+e^x) + f(-x)/(1+e^{-x})} dx
 = ∫[0,a] f(x) dx,
[Easy] 1
[Hard] 1/3
0270132人目の素数さん垢版2024/02/26(月) 22:39:51.04ID:5/Xla7DH
[Hard] a,bを整数の定数とし、g(x)=x^3+ax^2+bxとする。g(n)が素数となるような整数nは高々3個であることを示せ。
[Easy] a,bを整数の定数とし、g(x)=x^3+ax^2+bxとする。g(n)が素数となるような整数nは高々6個あることを示せ。
レスを投稿する


ニューススポーツなんでも実況