>>712
とりあえず高校の教科書にのってる
f(x)≦g(x), a<bのとき
∫[a,b]f(x)dx ≦ ∫[a,b]g(x)dx
は認めることにする。(これも平均値の定理からだせるけど。)
問題は「等号成立はx∈[a,b]においてf(x) = g(x)が恒等的に成立するとき」のパート。
等号が成立するとして
F(t) = ∫[a,t]g(x)dx - ∫[a,t]f(x)dx
とおく。F(a) = F(b) = 0。
もしa<c<bでF(c) > 0とすると平均値の定理からc<d<bでF’(d) = F(b) - F(c) < 0となるdがとれる。
しかしこのときF’(d) = g’(d) - f’(d) ≧ 0より矛盾。
よってF(c)≦0。
一方F’(t) = g(t) - f(t)≧0とF(a)=0よりF(c)≧0.
以上によりa<c<bにおいてF(c) = 0。
とくに0=F’(c) = g(c) - f(c)が恒等的に成立する。

試験にゃでないけど。大学いったらもっといい証明習うし。
そもそも積分の定義自体変わってくるしね。
とはいえ高校数学の範囲内なら範囲内でベストをつくす気持ちがないと結局理系の魂は育たない。