X



5次方程式の解を表現できる数体系 [転載禁止]©2ch.net

レス数が1000を超えています。これ以上書き込みはできません。
2015/04/24(金) 01:31:57.51ID:qXrTAdCX
5次方程式はご存知の通り解の公式がございませんね。

しかしそれは我々が知ってる実数の数体系(有理数と有理数の冪根の加減乗除で表される数)で表現できないというだけで、
実数の表現を拡張して、5次方程式の解の公式を一般化する為の実数の新しい表現を与えてやれば表現できるはず。


ガロワはなんでそんな事に気づかなかったんだ?
人類は二次方程式や3次方程式の解を一般化する為に平方根や冪根、複素数を産み出した。
5次方程式の解の公式がそれまでのやり方で得られないからとなぜ諦めるのか?新しい実数表現を作れば良いではないか。
2015/04/24(金) 02:00:04.36ID:qXrTAdCX
極端な話、ある5次方程式
ax^5+bx^4+cx^3+dx^2+ex^+f=0
の解を5次方程式根という実数表現R(a,b,c,d,e,f)と定義すればそれが解の公式になる。

もちろんこのままじゃ意味がないので、既存の実数表現で表現できない数のより小さな実数表現を定義してそれと既存の冪根や指数による実数表現の組み合わせで5次方程式の解を表したいという趣旨である。

要は二次方程式の解を表現するのに有理数だけで無理なので、平方根を導入したのと同じ発想である。
2015/04/24(金) 03:24:59.87ID:qXrTAdCX
ウィキペディアの噂では
x^5+ax+b=0の解をR(a,b)としたら4次方程式の解の公式を併用して表現できるようだ。
2015/04/24(金) 09:08:20.37ID:/EmibaFA
どこからツッコむべきか迷うが、スレ主が代数学を勉強してないことだけは分かった
2015/04/24(金) 10:32:09.93ID:jNuJBDl+
このスレッドは天才チンパンジー「アイちゃん」が
言語訓練のために立てたものです。

アイと研究員とのやり取りに利用するスレッドなので、
関係者以外は書きこまないで下さい。

                  京都大学霊長類研究所
2015/04/24(金) 15:10:15.25ID:Vhpnf7i+
アイちゃんの為にバナナを買ってきました
2015/04/24(金) 22:40:05.13ID:qR4UYm27
ガロアはどうか知らんが、
アーベルはやってたじゃないか。
2015/04/25(土) 01:50:35.58ID:yfVHLeC8
>>7
やった結果をまとめてください
2015/04/25(土) 12:27:59.09ID:u/Fc/fcr
それがなんの役に立つの
2015/04/25(土) 12:32:31.21ID:3pEHqh3h
>>9
それ、>>1に対して言ってるの?それとも方程式論そのものに対して言ってるの?
2015/04/25(土) 13:37:47.69ID:yfVHLeC8
実数解を持つことの判別式とある場合の1つの実数解を表す解の公式が欲しい。
2015/04/25(土) 13:39:34.00ID:yfVHLeC8
5次関数は絶対X軸と交わるから少なくとも一つは実数解があるのか。
2015/04/25(土) 13:39:57.54ID:yfVHLeC8
あげ
14132人目の素数さん
垢版 |
2015/04/25(土) 13:41:58.92ID:GW6Cv4pu
(x-√(-1))^5=0 は実数解を持たない
2015/04/25(土) 18:52:33.22ID:haoD7/XA
>>14
そこは「実係数の」くらい補って読んであげようよ。
16132人目の素数さん
垢版 |
2015/04/26(日) 00:03:20.76ID:m9sKVYOd
はあ?
17132人目の素数さん
垢版 |
2015/04/26(日) 00:06:00.33ID:aR7z90t+
数学書でもその程度は自分で補う場面はあるでしょ(もしくはこの先あるよ)
厳密厳密言うのは馬鹿の一つ覚えだってこと
18132人目の素数さん
垢版 |
2015/04/26(日) 00:24:10.85ID:+xCoDos7
はあ?
2015/04/26(日) 03:42:42.17ID:jMD+l1yZ
まあ話を元に戻そうじゃ無いか。
かつて有理数しか知らないで昔の人は二次方程式の解の公式を作ろうとした。当然それは出来ない。どうやっても出来ない。
だから二次方程式には解はないと言いきる事も出来たであろう。まさにガロワが5次方程式の解の公式は無いと結論したように。

しかしそこで昔の人は二乗して整数になる平方根というものを定義して二次方程式の解を体系的に表す事に成功して新たな数学が進歩した訳だ。

いま5次方程式に4次方程式までのやり方で解の公式を導く事ができない事が解っている。
ではここで平方根のように新たな実数表現を定義しよう。その実数表現があれば5次方程式の解の公式が作れるとしたら。

その実数表現は平方根と同じ様にいくらでも近似値を計算できるもので、そうであればあらゆる5次方程式の解の値を厳密に知る事ができるようになるのだ。
2015/04/26(日) 04:00:40.03ID:wd99WgCg
代数学の基本定理を知っていれば、
複素5次方程式に複素解が存在することが判るし、
中間値定理を知っていれば、
実5次方程式に実数解が存在することが判る。
どこに数体系を拡張する必要が?

解公式の話をしているんであれば、拡張すべきは
数ではなくて、公式を構成するのに使える関数のほう。
そっちは、アーベルの解公式で済んでいる。
「5次方程式 楕円モジュラー関数」でggrks.
2015/04/26(日) 07:30:18.01ID:1mTJXbpE
まぁ、1が自力でガロアやアーベルに追いついたらそれはそれで大したものだが、
この様子ではそこまで辿り着くのも無理だな。
問題の認識から間違ってるし。
2015/04/26(日) 09:21:05.40ID:jMD+l1yZ
>>20
ありがとうございます!
23132人目の素数さん
垢版 |
2015/07/16(木) 20:45:49.95ID:YoX2R0cc
うーん確かに頭悪そう
まあ解決したっぽいからなにも言わないけど
2015/07/17(金) 04:00:14.85ID:52Ibdodf
>>1
>5次方程式はご存知の通り解の公式がございませんね。

結論から言いますと、5次方程式の「解の公式」はあります。

勿論、「四則演算」と「ベキ根をとるという演算」のみで5次方程式の解の公式を表すことはできません。
これはアーベルにより示されたことです。

しかし、我々は「四則演算」という演算の他に「ベキ根をとるという演算」を付け加えて考えることにより、2次方程式の解の公式を表すことができたことを知っています。
それとちょうど同じような感じで、「四則演算」や「ベキ根をとるという演算」という演算の他に、もう一つ「ある演算」を付け加えて考えることにより、5次方程式の解の公式が得られるのです。

このことは、約一世紀前にクラインにより研究されたことです。
「楕円モジュラー関数」や「超幾何級数」でググれば出てきます。
2015/07/17(金) 07:15:01.63ID:UunAbosm
> 「楕円モジュラー関数」や「超幾何級数」でググれば出てきます。

素朴な疑問。
じゃあ6次方程式、7次方程式、8次方程式、さらには一般のn次方程式は、
「楕円モジュラー関数」や「超幾何級数」を使えば出来るのか?
26132人目の素数さん
垢版 |
2015/07/17(金) 12:35:54.06ID:ZOIvhb1c
>>25
http://www.geocities.jp/ikuro_kotaro/koramu/450_20.htm
2015/07/17(金) 17:04:17.97ID:B9F2YqC1
>>26
このサイトの人はよく勉強して、詳しく書いてるんだけど、↓を見ると、
やっぱり素人だなと

なお,現在では6次以上の高次元でも,モジュラー関数のような
他の道具を使って解けることがわかっています.さらに,条件を厳しくした下で
7次方程式を解くことはできるだろうかという問題も設定することができる
のですが,それに対してはまだ解決の糸口すら見つかっていません.
おぼろげながらも見えないので,現在,それを研究している数学者は
ほとんどいません.
28132人目の素数さん
垢版 |
2015/07/17(金) 17:08:29.94ID:rVdvJffQ
運営乙
29132人目の素数さん
垢版 |
2015/07/23(木) 19:40:57.99ID:cjCVoxKP
複素数以外で代数学の基本定理は成立しないだろ
30132人目の素数さん
垢版 |
2015/07/23(木) 19:55:57.60ID:qw5Ss59m
仮定が複素数係数だからな
31132人目の素数さん
垢版 |
2015/08/29(土) 07:44:16.52ID:RfXf2fRR
v(^v^)
2015/11/20(金) 23:43:34.81ID:WPZ+xjsn
NHK教育を見て48815倍賢く北の湖追悼 [転載禁止]©2ch.net
http://nhk.2ch.net/test/read.cgi/liveetv/1448029586/
33132人目の素数さん
垢版 |
2017/03/22(水) 13:47:56.18ID:t75b4dVR
良スレ
34132人目の素数さん
垢版 |
2017/04/15(土) 22:51:52.99ID:bu7MG6ej
楕円テータ関数でできた
一般の場合の Tata Lectures II Umemura の方は読めん
2017/04/15(土) 23:15:56.73ID:x4sopTnV
こういういうのを無用の数学といふ
36132人目の素数さん
垢版 |
2017/04/16(日) 19:09:14.49ID:Sxa7kjvQ
なんで元を増やすってわからない奴いるの?
2017/04/17(月) 20:24:05.89ID:eY5Vmg1s
増やすと新たに何ができるようになるのか
を書かないからじゃない?
2017/05/08(月) 13:10:37.58ID:OR+quqWp
2017/05/08(月) 13:11:02.98ID:OR+quqWp
2017/05/08(月) 13:11:29.14ID:OR+quqWp
2017/05/08(月) 13:11:52.33ID:OR+quqWp
2017/05/08(月) 13:12:15.16ID:OR+quqWp
2017/05/08(月) 13:12:40.12ID:OR+quqWp
2017/05/08(月) 13:13:04.26ID:OR+quqWp
2017/05/08(月) 13:13:26.01ID:OR+quqWp
2017/05/08(月) 13:13:50.10ID:OR+quqWp
2017/05/08(月) 13:14:11.05ID:OR+quqWp
2017/05/27(土) 04:31:21.34ID:YmyHcDO0
複素数体Cは代数閉体であるから元(数)を増やさなくても解はある
Cの中に有理数と四則と冪根だけでは表せない数があるってだけの話
2017/05/27(土) 04:57:44.40ID:YmyHcDO0
ところで、
標数2の体においては、2次方程式の解ですら係数の四則と平方根では表せず、他の記号を用意して表すらしい。

Wikipediaの「二次方程式」に書かれている(正しいかは知らん)が、D.A.コックスの「ガロワ理論」でも同じようなことが書かれていたと思う。もうこの本持ってないから正確にはわからん。
2017/05/27(土) 05:50:24.50ID:Z5EB+AKX
らしい、って自分で確かめればいいじゃん
そんな複雑じゃないし
51132人目の素数さん
垢版 |
2017/05/30(火) 12:09:19.28ID:a5d4p2OZ
>>35
おまえが無用w
2017/05/30(火) 12:30:20.71ID:Z9XEgmwM
>>36
バカ発見
2017/05/30(火) 13:11:43.55ID:JdN8EDh6
★★★馬鹿板徒は真に倫理的な洞察により情緒豊かに暮らし、日頃から理性的なカキコを志すべき。★★★

54132人目の素数さん
垢版 |
2017/05/30(火) 17:35:42.72ID:On1YQt/F
5次方程式の解の公式は存在するし、簡単じゃん
一般の場合はむずかしい
Mumford Tata Lectures II Umemura はまだ読めん
55132人目の素数さん
垢版 |
2017/05/30(火) 17:38:13.70ID:On1YQt/F
あれ、?
34 は俺かな?
2017/05/30(火) 22:50:59.35ID:JdN8EDh6
2017/05/30(火) 22:51:22.26ID:JdN8EDh6
2017/05/30(火) 22:51:48.83ID:JdN8EDh6
2017/05/30(火) 22:52:11.80ID:JdN8EDh6
2017/05/30(火) 22:52:34.39ID:JdN8EDh6
2017/05/30(火) 22:52:55.36ID:JdN8EDh6
2017/05/30(火) 22:53:17.38ID:JdN8EDh6
2017/05/30(火) 22:53:38.85ID:JdN8EDh6
2017/05/30(火) 22:54:03.33ID:JdN8EDh6
2017/05/30(火) 22:54:26.52ID:JdN8EDh6
2017/05/31(水) 14:55:57.51ID:AwZVhAjC
>>54
それは「解の公式」の範囲次第だろってのが
オイラー時代とルフィ二以降の違いで、
アーベルもガロアもその時代の中で出てきた。
今更、何言ってんだ。
67132人目の素数さん
垢版 |
2017/08/09(水) 15:33:13.69ID:Zl9JzODq
エクセルで三次方程式、四次方程式を解くのをつくった。
五次方程式では、どのような手法があるかを考えている。
2017/08/09(水) 15:55:55.59ID:WvFggA1P
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★

2017/08/09(水) 16:49:57.46ID:WvFggA1P
2017/08/09(水) 16:50:14.33ID:WvFggA1P
2017/08/09(水) 16:50:30.79ID:WvFggA1P
2017/08/09(水) 16:50:48.20ID:WvFggA1P
2017/08/09(水) 16:51:05.00ID:WvFggA1P
2017/08/09(水) 16:51:21.67ID:WvFggA1P
2017/08/09(水) 16:51:39.14ID:WvFggA1P
2017/08/09(水) 16:51:56.27ID:WvFggA1P
2017/08/09(水) 16:52:12.28ID:WvFggA1P
2017/08/09(水) 16:52:27.65ID:WvFggA1P
79132人目の素数さん
垢版 |
2017/08/09(水) 21:12:36.80ID:Zl9JzODq
この¥っての、うざい。
引込め。
2017/08/10(木) 02:40:31.53ID:JHmEReZW
81132人目の素数さん
垢版 |
2017/08/10(木) 15:25:21.11ID:VJDQ2fXc
>>1
>ガロワはなんでそんな事に気づかなかったんだ?
皆に言われてると思うけど
四則演算とベキ乗根を使っては表せないということを示したのであって
それ以上のことを示すには早死にしすぎたってことでしょ
82132人目の素数さん
垢版 |
2017/08/10(木) 15:31:27.48ID:VJDQ2fXc
ところで実係数3次方程式の実数解は係数の四則演算と正数の実ベキ乗根でどう表せるの?
2017/08/10(木) 16:00:34.22ID:JHmEReZW
2017/08/10(木) 16:00:52.00ID:JHmEReZW
2017/08/10(木) 16:01:09.09ID:JHmEReZW
2017/08/10(木) 16:01:27.20ID:JHmEReZW
2017/08/10(木) 16:01:43.00ID:JHmEReZW
2017/08/10(木) 16:01:59.84ID:JHmEReZW
2017/08/10(木) 16:02:17.91ID:JHmEReZW
2017/08/10(木) 16:02:34.10ID:JHmEReZW
2017/08/10(木) 16:02:53.35ID:JHmEReZW
2017/08/10(木) 16:03:10.58ID:JHmEReZW
2017/08/10(木) 21:30:53.82ID:2J5HRP1K
>>82
とにかく一般の解の公式はこれ
http://enjoymath.pomb.org/wp-content/uploads/2015/01/02b47da1b81579ffae6da858a4d15d1d.png
2017/08/10(木) 21:56:19.13ID:JHmEReZW
2017/08/11(金) 02:02:00.08ID:tTauAROb
x^3+ax^2+bx+c=0 の冪根による解法
(a,b,cは実数とするが、複素数でもよい。つまり、複素数でも全く同じ解法である)

A=9ab-2a^3-27, B=a^2-3b とおく。
t^2-At+B^3=0 の2解は t=(A±√(A^2-4B^3))/2 である。
L,Rをこの2解とおく(どちらがどちらでもよい)。LR=B^3

Lの3乗根UとRの3乗根Vの組(U,V)は9組あるが、そのうち UV=B をみたすような3組だけをとる。
すると x=(U+V-a)/3 である。

U,Vをa,b,cで表したら>>93になるでしょ多分
2017/08/11(金) 02:43:32.65ID:tTauAROb
ここで注意すべきなのは、
>>95>>82の望むような、係数の四則演算と“正数の”実ベキ乗根で解いている式ではないこと。

a,b,cが実数であっても A^2-4B^3<0 となる時は
√(A^2-4B^3) は負数の平方根を考えている。これは純虚数なのでL,Rは互いに共軛な虚数となる。
次にU,Vを求める際は、虚数の3乗根を考えている。U,Vもまた虚数となるのだが、UV=Bなる(U,V)においては3組ともU,Vは互いに共軛になって、
結局U+Vは実数で、xも3つとも実数である。

このように(冪根による方法では)実数解が虚数を使わなければ表せない場合がある。
これは虚数の存在が認められはじめる一因になった。
2017/08/11(金) 02:45:08.53ID:tTauAROb
訂正
誤 A=9ab-2a^3-27
正 A=9ab-2a^3-27c
2017/08/11(金) 06:05:55.92ID:ToUPXODc
2017/08/11(金) 06:06:11.66ID:ToUPXODc
2017/08/11(金) 06:06:26.60ID:ToUPXODc
2017/08/11(金) 06:06:42.55ID:ToUPXODc
2017/08/11(金) 06:06:58.41ID:ToUPXODc
2017/08/11(金) 06:07:36.01ID:ToUPXODc
2017/08/11(金) 06:07:51.76ID:ToUPXODc
2017/08/11(金) 06:08:07.93ID:ToUPXODc
2017/08/11(金) 06:08:22.96ID:ToUPXODc
2017/08/11(金) 06:09:05.19ID:ToUPXODc
108132人目の素数さん
垢版 |
2017/08/11(金) 09:18:58.65ID:9d/kMSrK
>>96
つまり
どうやっても角の3等分を伴うから
「3次方程式の解の公式を正数のベキ乗根と四則で表すことは無理」
ってことになるの?それはどう証明するのかな?
109132人目の素数さん
垢版 |
2017/08/11(金) 09:21:45.21ID:9d/kMSrK
>>96
>√(A^2-4B^3) は負数の平方根を考えている。これは純虚数なのでL,Rは互いに共軛な虚数となる。
ここはね
「a<0のとき√a=(√(-a))i」
と定義してしのげる(納得しやすい)と思うんだよな
けど
虚数の3乗根は無理かなという気がする証明知らないけど
2017/08/11(金) 09:29:10.85ID:ToUPXODc
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★

2017/08/11(金) 10:45:30.59ID:bZRcZ7MH
>>108
キチガイの人?
112132人目の素数さん
垢版 |
2017/08/11(金) 10:51:29.54ID:9d/kMSrK
>>111
なんで?
2017/08/11(金) 10:58:59.51ID:ToUPXODc
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★

114132人目の素数さん
垢版 |
2017/08/11(金) 11:00:10.99ID:9d/kMSrK
>>108
>「3次方程式の解の公式を正数のベキ乗根と四則で表すことは無理」
正確には
「実3次方程式の解の実部と虚部を係数の四則と正数のベキ乗根で表すことは無理」
かどうかを知りたいってこと
>>111
は知ってるの?証明は?
2017/08/11(金) 11:35:50.40ID:ToUPXODc
2017/08/11(金) 11:36:07.66ID:ToUPXODc
2017/08/11(金) 11:36:22.47ID:ToUPXODc
2017/08/11(金) 11:36:39.14ID:ToUPXODc
2017/08/11(金) 11:36:54.75ID:ToUPXODc
2017/08/11(金) 11:37:10.52ID:ToUPXODc
2017/08/11(金) 11:37:26.47ID:ToUPXODc
2017/08/11(金) 11:37:41.20ID:ToUPXODc
2017/08/11(金) 11:37:57.09ID:ToUPXODc
2017/08/11(金) 11:38:12.86ID:ToUPXODc
125132人目の素数さん
垢版 |
2017/08/12(土) 04:29:07.74ID:2ZuBo3S0
>>114
あいや
虚部が0の時の実部を表すことができないかどうかだけでいいや
2017/08/12(土) 05:20:25.36ID:Ay3s6hqd
127132人目の素数さん
垢版 |
2017/08/14(月) 14:43:23.38ID:62Cjdjxu
>>114あたり

3次方程式を実際に解いてみたことあるのかな。

カルダノの解法では計算途中で実数のみの場合、得られる結果は重解か一実数解と二つの
複素数解である。
三つの異なる実数解は解けなかった。
その場合、三角関数の三倍角公式を駆使した、ビエタの解法で得られることが分かった。

カルダノの解法で途中で虚数が出てきた場合、解けないしダメかなーと思っていたが
ドモアブルの定理を使うことで、三つの異なる実数解の場合が解けることが分かった。

分かってから書き込んでるのかな。


¥の書き込みは邪魔だ。
128132人目の素数さん
垢版 |
2017/08/14(月) 14:46:10.63ID:9Pjy4ET8
>>127
>分かってから書き込んでるのかな。
歴史的なことは知らないし
知りたいのは不可能であるかどうかの事実とその証明
2017/08/14(月) 14:52:42.03ID:gAJfNsT/
2017/08/14(月) 14:53:01.76ID:gAJfNsT/
2017/08/14(月) 14:53:19.13ID:gAJfNsT/
2017/08/14(月) 14:53:36.88ID:gAJfNsT/
2017/08/14(月) 14:53:53.15ID:gAJfNsT/
2017/08/14(月) 14:54:10.24ID:gAJfNsT/
2017/08/14(月) 14:54:27.43ID:gAJfNsT/
2017/08/14(月) 14:54:47.46ID:gAJfNsT/
2017/08/14(月) 14:55:05.72ID:gAJfNsT/
2017/08/14(月) 14:55:22.73ID:gAJfNsT/
139132人目の素数さん
垢版 |
2017/08/14(月) 14:55:34.55ID:62Cjdjxu
>>128
お前は他力本願か。
全部やってくれるのを待ってるのか。
以下でも読んどれ。


三次方程式の解の公式が長すぎて教科書に書けない!

http://enjoymath.pomb.org/?p=12
2017/08/14(月) 15:03:16.92ID:gAJfNsT/
141132人目の素数さん
垢版 |
2017/08/14(月) 15:24:46.10ID:9Pjy4ET8
>>139
知ってる人が居ないってことはどうも真みたいね
2017/08/14(月) 15:29:40.12ID:gAJfNsT/
2017/08/14(月) 15:29:57.35ID:gAJfNsT/
2017/08/14(月) 15:30:44.19ID:gAJfNsT/
2017/08/14(月) 15:31:01.78ID:gAJfNsT/
2017/08/14(月) 15:31:19.68ID:gAJfNsT/
2017/08/14(月) 15:31:37.08ID:gAJfNsT/
2017/08/14(月) 15:31:55.39ID:gAJfNsT/
2017/08/14(月) 15:32:11.83ID:gAJfNsT/
2017/08/14(月) 15:32:30.12ID:gAJfNsT/
2017/08/14(月) 15:32:48.49ID:gAJfNsT/
2017/08/14(月) 16:41:12.46ID:VDx0R9Cr
>>141
怒らせたり馬鹿にしたりで情報を引き出す手口
2017/08/14(月) 16:44:28.34ID:gAJfNsT/
154132人目の素数さん
垢版 |
2017/08/14(月) 17:58:26.29ID:xxV/n5K8
>>152
・・・・・人を信じない典型か
2017/08/14(月) 19:34:47.01ID:gAJfNsT/
2017/08/14(月) 20:15:01.30ID:VDx0R9Cr
>>154
これも情報を引き出すための煽り
2017/08/14(月) 21:37:13.74ID:gAJfNsT/
2017/08/14(月) 21:37:32.71ID:gAJfNsT/
2017/08/14(月) 21:37:50.95ID:gAJfNsT/
2017/08/14(月) 21:38:11.92ID:gAJfNsT/
2017/08/14(月) 21:38:30.95ID:gAJfNsT/
2017/08/14(月) 21:38:48.78ID:gAJfNsT/
2017/08/14(月) 21:39:08.07ID:gAJfNsT/
2017/08/14(月) 21:39:25.96ID:gAJfNsT/
2017/08/14(月) 21:39:44.54ID:gAJfNsT/
2017/08/14(月) 21:40:03.34ID:gAJfNsT/
167132人目の素数さん
垢版 |
2017/08/14(月) 21:52:40.59ID:uno8m9t8
>>156
・・・・・
2017/08/14(月) 22:58:28.36ID:VDx0R9Cr
>>167
これも
2017/08/14(月) 23:32:53.32ID:gAJfNsT/
2017/08/15(火) 10:37:15.19ID:eWiOROST
2017/08/15(火) 10:37:30.40ID:eWiOROST
2017/08/15(火) 10:37:47.24ID:eWiOROST
2017/08/15(火) 10:38:04.45ID:eWiOROST
2017/08/15(火) 10:38:20.73ID:eWiOROST
2017/08/15(火) 10:38:35.64ID:eWiOROST
2017/08/15(火) 10:38:51.14ID:eWiOROST
2017/08/15(火) 10:42:08.65ID:eWiOROST
2017/08/15(火) 10:42:24.01ID:eWiOROST
179132人目の素数さん
垢版 |
2017/08/18(金) 17:45:02.00ID:Mh0KLwag
三次方程式と四次方程式はエクセルを使って解けた。
さて五次方程式はどうしようか。
解の公式はないそうだ。

必ず実数解が一つは存在する。
それがわかれば組み立て除法を行い4次方程式にしてファラーりの定理にて
残り四つの解を得るものをつくってみた。
そこでだ、エクセルを駆使して一つの実数解を探し出すようなものがあれば、五次
方程式の解法になる。
グラフでも描いて探すような手法はないものか、考えている。



¥は迷惑だ。 出てくるな!
2017/08/18(金) 17:49:45.34ID:EJ+CeIow
2017/08/18(金) 21:53:03.74ID:QQcCua7G
代数的一般解法が、
5次以上の実係数方程式には無い、

…でFA?
2017/08/18(金) 22:46:23.28ID:EJ+CeIow
2017/08/18(金) 23:00:25.49ID:A0iIVL+H
>>181
複素数係数でも無いよ
2017/08/19(土) 00:29:33.96ID:PW/HJDBj
任意の有理数係数の5次多項式に対して、ガロア群が可解かどうか判定するアルゴリズムは存在しますか?
2017/08/19(土) 02:24:52.05ID:LB3Hl+jp
2017/08/19(土) 02:25:09.91ID:LB3Hl+jp
2017/08/19(土) 02:25:25.93ID:LB3Hl+jp
2017/08/19(土) 02:25:41.73ID:LB3Hl+jp
2017/08/19(土) 02:25:58.03ID:LB3Hl+jp
2017/08/19(土) 02:26:13.97ID:LB3Hl+jp
2017/08/19(土) 02:26:30.79ID:LB3Hl+jp
2017/08/19(土) 02:26:49.33ID:LB3Hl+jp
2017/08/19(土) 02:27:06.33ID:LB3Hl+jp
2017/08/19(土) 02:27:24.03ID:LB3Hl+jp
195132人目の素数さん
垢版 |
2017/08/19(土) 12:18:03.02ID:5ERmRQ7b
>>184
そりゃ当然
2017/08/19(土) 12:18:43.84ID:LB3Hl+jp
197132人目の素数さん
垢版 |
2017/08/19(土) 12:22:18.59ID:5ERmRQ7b
虚数の3乗根の実部と虚部を簡単に表せないなら
ある意味3次方程式も解の公式は無いって言って
おかしく無いかも
2017/08/19(土) 12:30:44.50ID:PW/HJDBj
>>195
当然なのですか?
入力データは(有限位数の)ガロア群ではなく、多項式の方ですけど
2017/08/19(土) 12:32:00.43ID:LB3Hl+jp
2017/08/19(土) 13:03:29.34ID:F/EL4ytW
>>184
係数からガロア群を計算するアルゴリズムはある
http://d.hatena.ne.jp/m-a-o/touch/20120623/p2
有限群が可解かどうかの判定もアルゴリズムがあったはず
2017/08/19(土) 14:34:46.23ID:LB3Hl+jp
https://www.gap-system.org/

202132人目の素数さん
垢版 |
2017/08/19(土) 16:49:28.61ID:EV56/Q2A
>>197
ドモアブルの定理を使って求めるって習わなかったかな?
2017/08/19(土) 17:06:15.53ID:LB3Hl+jp
2017/08/19(土) 17:06:34.50ID:LB3Hl+jp
2017/08/19(土) 17:06:51.96ID:LB3Hl+jp
2017/08/19(土) 17:07:08.37ID:LB3Hl+jp
2017/08/19(土) 17:07:26.15ID:LB3Hl+jp
2017/08/19(土) 17:07:42.95ID:LB3Hl+jp
2017/08/19(土) 17:07:59.94ID:LB3Hl+jp
2017/08/19(土) 17:08:19.25ID:LB3Hl+jp
2017/08/19(土) 17:08:36.36ID:LB3Hl+jp
2017/08/19(土) 17:08:52.51ID:LB3Hl+jp
213132人目の素数さん
垢版 |
2017/08/20(日) 01:26:22.74ID:7u7e4I8r
>>202
それだと虚数の3乗根でしょ?それの実部と虚部をどう表すか書いてみ
214132人目の素数さん
垢版 |
2017/08/20(日) 01:30:34.44ID:7u7e4I8r
具体的な問題としては
1+2iの3乗根の実部と虚部はどう表す?
どうやってもarctanとか必要では?
たぶん正数の実ベキ乗根と四則では表せないと思うな
2017/08/20(日) 03:01:18.61ID:vRIJh8/a
2017/08/20(日) 03:01:37.39ID:vRIJh8/a
2017/08/20(日) 03:01:56.09ID:vRIJh8/a
2017/08/20(日) 03:02:14.00ID:vRIJh8/a
2017/08/20(日) 03:02:30.97ID:vRIJh8/a
2017/08/20(日) 03:02:49.00ID:vRIJh8/a
2017/08/20(日) 03:03:05.46ID:vRIJh8/a
2017/08/20(日) 03:03:25.61ID:vRIJh8/a
2017/08/20(日) 03:03:45.54ID:vRIJh8/a
2017/08/20(日) 03:04:02.02ID:vRIJh8/a
2017/08/20(日) 13:09:19.18ID:vKBXKO1V
解の実部・虚部は解じゃないでしょ
「解じゃないものが表せないから解の公式は無い」
こんな馬鹿な理屈があるかよ
226132人目の素数さん
垢版 |
2017/08/20(日) 13:17:59.98ID:7u7e4I8r
じゃあ
虚部が0である解の実部を表してよ
2017/08/20(日) 13:22:28.06ID:vRIJh8/a
2017/08/20(日) 15:30:23.20ID:vRIJh8/a
2017/08/20(日) 15:30:42.06ID:vRIJh8/a
2017/08/20(日) 15:31:00.61ID:vRIJh8/a
2017/08/20(日) 15:31:19.68ID:vRIJh8/a
2017/08/20(日) 15:31:37.73ID:vRIJh8/a
2017/08/20(日) 15:31:54.73ID:vRIJh8/a
2017/08/20(日) 15:32:11.97ID:vRIJh8/a
2017/08/20(日) 15:32:32.48ID:vRIJh8/a
2017/08/20(日) 15:32:50.41ID:vRIJh8/a
237202
垢版 |
2017/09/04(月) 12:35:05.93ID:pLkbqCUG
>>213
書いてみとか、失礼なうえに馬鹿晒しよる。
お前は高卒か? Fランク卒か?

虚数の三重根ならこうだ。
Z=cosθ + isinθ とする。
Z^3=cos3θ + isin3θ = i

cos3θ=0  sin3θ=1

θ=30°、150°、270°

順に

Z=(1.732 + i)/2、(-1.732 + i)/2、-i

この3つが虚数iの立方根だ。

(a + b)^3の公式使って3乗して確認しろ。 馬鹿たれが。
2017/09/04(月) 12:37:34.11ID:xP4OelQr
2017/09/04(月) 12:37:50.39ID:xP4OelQr
2017/09/04(月) 12:38:06.88ID:xP4OelQr
2017/09/04(月) 12:38:23.70ID:xP4OelQr
2017/09/04(月) 12:38:41.18ID:xP4OelQr
2017/09/04(月) 12:38:58.16ID:xP4OelQr
2017/09/04(月) 12:39:15.23ID:xP4OelQr
2017/09/04(月) 12:39:58.39ID:xP4OelQr
2017/09/04(月) 12:40:15.60ID:xP4OelQr
2017/09/04(月) 12:40:32.97ID:xP4OelQr
248202
垢版 |
2017/09/04(月) 12:58:24.80ID:pLkbqCUG
>>214
極形式に変換できたら、あとは簡単だ。

だが Z=a + bi からZ=r(cosθ + isinθ)に変換するのがちょっと大変だ。

私は a と b の値から r と θ の値を求めるのをエクセルで作っている。
勉強や遊びで使っている。

エクセルの関数辞典を引いたら、エクセルの関数でそれがある。
それでもいい。

自分の頭で考えろ。


書き込みがあるとすぐに¥を書き込みをするクズがいる。
おかげで大変見づらい。
目の汚れだ。出てくるな。
2017/09/04(月) 13:22:06.20ID:xP4OelQr
2017/09/04(月) 13:22:23.19ID:xP4OelQr
2017/09/04(月) 13:22:39.56ID:xP4OelQr
2017/09/04(月) 13:22:54.87ID:xP4OelQr
2017/09/04(月) 13:23:11.12ID:xP4OelQr
2017/09/04(月) 13:23:28.88ID:xP4OelQr
2017/09/04(月) 13:23:43.98ID:xP4OelQr
2017/09/04(月) 13:24:01.22ID:xP4OelQr
2017/09/04(月) 13:24:45.65ID:xP4OelQr
2017/09/04(月) 13:25:03.30ID:xP4OelQr
259132人目の素数さん
垢版 |
2017/09/04(月) 20:03:31.79ID:eqJtSk/H
>>237

z=a+bi
の3乗根の実部と虚部をaとbとで表してください
って言っているんだが?
260132人目の素数さん
垢版 |
2017/09/04(月) 20:04:42.92ID:eqJtSk/H
>>248
極形式のrはaとbから2次拡大でできる
θは?
261132人目の素数さん
垢版 |
2017/09/04(月) 20:05:56.38ID:eqJtSk/H
arctanが必要でしょ?
つまり代数的には表せないんじゃないの?
その証明が欲しい
262132人目の素数さん
垢版 |
2017/09/04(月) 20:07:38.49ID:eqJtSk/H
できるならできる
できないならできない
どっちなの?
263132人目の素数さん
垢版 |
2017/09/04(月) 20:30:22.26ID:eqJtSk/H
複素数の平方根の方は問題ないんだよね
x^2-y^2=a
2xy=b
を満たす実数x,yは
x^2-(b/2x)^2=a
4x^4-4ax^2-b^2=0

t=x^2
と置くと
t^2-at-b^2/4=0
より
t=(a±√(a^2+b^2))/2=(a+√(a^2+b^2))/2>0
x=±√(√(a^2+b^2)+a)/√2
y=±√(√(a^2+b^2)-a)/√2
よって
±√(a+bi)=±{(√(√(a^2+b^2)+a)±i√(√(a^2+b^2)-a)}/√2
264132人目の素数さん
垢版 |
2017/09/04(月) 20:32:09.14ID:eqJtSk/H
ほんと
質問の意味を理解していたのは
>>96 名前:132人目の素数さん Mail:sage 投稿日:2017/08/11(金) 02:43:32.65 ID:tTauAROb
だけだとは情けない
265132人目の素数さん
垢版 |
2017/09/04(月) 20:33:32.20ID:eqJtSk/H
>>261
>つまり代数的には表せないんじゃないの?
実代数的というべきか
普通言うところの代数的より条件が厳しい
266132人目の素数さん
垢版 |
2017/09/04(月) 20:34:27.43ID:eqJtSk/H
>>248
>エクセル
・・・
2017/09/04(月) 21:24:15.80ID:rnlVKJj1
>>96の回答では不適切だからしつこく食い下がっていたのでは?
2017/09/05(火) 00:36:18.18ID:ZSz+2Alj
2017/09/05(火) 00:36:39.52ID:ZSz+2Alj
2017/09/05(火) 00:36:57.37ID:ZSz+2Alj
2017/09/05(火) 00:37:14.56ID:ZSz+2Alj
2017/09/05(火) 00:37:31.27ID:ZSz+2Alj
2017/09/05(火) 00:37:49.74ID:ZSz+2Alj
2017/09/05(火) 00:38:07.96ID:ZSz+2Alj
2017/09/05(火) 00:38:28.08ID:ZSz+2Alj
2017/09/05(火) 00:38:45.73ID:ZSz+2Alj
2017/09/05(火) 00:39:04.76ID:ZSz+2Alj
278132人目の素数さん
垢版 |
2017/09/06(水) 23:59:22.71ID:gIi4CQjU
>>237
1+2iの三乗根書いてみ
2017/09/07(木) 03:45:16.29ID:6DNo3zLu
2017/09/07(木) 07:23:30.12ID:6DNo3zLu
2017/09/07(木) 07:23:47.80ID:6DNo3zLu
2017/09/07(木) 07:24:04.72ID:6DNo3zLu
2017/09/07(木) 07:24:22.55ID:6DNo3zLu
2017/09/07(木) 07:24:38.79ID:6DNo3zLu
2017/09/07(木) 07:24:54.66ID:6DNo3zLu
2017/09/07(木) 07:25:13.34ID:6DNo3zLu
2017/09/07(木) 07:25:31.53ID:6DNo3zLu
2017/09/07(木) 07:25:50.36ID:6DNo3zLu
289132人目の素数さん
垢版 |
2017/09/07(木) 07:28:49.57ID:Iasheep5
>>267
不適切というのは答えようとして答えが正しくない期待したものではないときに使う言葉
この場合は不適切ではなく不満足・不十分という用語が適切かな
2017/09/07(木) 07:39:47.45ID:6DNo3zLu
2017/09/07(木) 07:40:05.04ID:6DNo3zLu
2017/09/07(木) 07:40:22.26ID:6DNo3zLu
2017/09/07(木) 07:40:40.66ID:6DNo3zLu
2017/09/07(木) 07:40:57.80ID:6DNo3zLu
2017/09/07(木) 07:41:14.93ID:6DNo3zLu
2017/09/07(木) 07:41:34.05ID:6DNo3zLu
2017/09/07(木) 07:41:51.32ID:6DNo3zLu
2017/09/07(木) 07:42:08.31ID:6DNo3zLu
2017/09/07(木) 07:42:25.81ID:6DNo3zLu
2017/09/07(木) 10:38:23.82ID:12mBS52t
この人は既に口喧嘩に勝つことに興味が移ってしまってるね
そんなんじゃまともに相手されないよ
2017/09/07(木) 10:49:31.46ID:6DNo3zLu
302132人目の素数さん
垢版 |
2017/09/07(木) 10:50:34.98ID:Iasheep5
>>300
違うよ・・・・
事実と証明を知りたいということが分からないとは
人の気持ちを推し量ることができないのかよ・・・・・
303132人目の素数さん
垢版 |
2017/09/07(木) 10:53:38.45ID:Iasheep5
ここを読んでいる人の
誰も分からないということはどうも正しそうだということはだんだん分かってきた
あと方程式の解の表記について無頓着な人が多そうだということも
それから
複素数のベキ乗根では偏角が本質的な役割を果たすので
これを使う限りはある意味代数的な表記とは言えないかもということが理解できていない人も多そうということも
2017/09/07(木) 10:56:41.30ID:6DNo3zLu
305132人目の素数さん
垢版 |
2017/09/07(木) 10:58:00.18ID:Iasheep5
もう少し書くと
極表記を使っていいやと思う人は
係数もすべて極凶器で与え解も極表記で与えることを考えてみるのはどうかな?
こちらも全く正数の実ベキ根と四則を使った実代数的には表せないはず
はずとは思うけどこれも証明知らないし事実かどうかも分からないけどさ
2017/09/07(木) 10:59:11.48ID:12mBS52t
どう見ても>>96で終わっている話題なのに、何故かこれを不適切・不満だとするポーズをとっている
307132人目の素数さん
垢版 |
2017/09/07(木) 11:01:49.00ID:Iasheep5
>>306
証明がないからさ
それに
「実ベキ根と四則で表せない」は事実なの?
長らくできなかったが複素ベキ根を使ってできるようになったとしか>>98は書いていないよ
308132人目の素数さん
垢版 |
2017/09/07(木) 11:02:52.85ID:Iasheep5
どうも
できるできないの証明の重要性ということも分かっていただけないようで残念
309132人目の素数さん
垢版 |
2017/09/07(木) 11:03:17.74ID:Iasheep5
>>307
証明へのポインタでもいい
2017/09/07(木) 11:10:18.98ID:6DNo3zLu
2017/09/07(木) 11:10:35.84ID:6DNo3zLu
2017/09/07(木) 11:10:52.12ID:6DNo3zLu
2017/09/07(木) 11:11:07.98ID:6DNo3zLu
2017/09/07(木) 11:11:22.86ID:6DNo3zLu
2017/09/07(木) 11:11:38.16ID:6DNo3zLu
2017/09/07(木) 11:11:53.58ID:6DNo3zLu
2017/09/07(木) 11:12:09.76ID:6DNo3zLu
318132人目の素数さん
垢版 |
2017/09/07(木) 11:12:17.61ID:Iasheep5
>>306
付け加えると
複素数を使えば実数解を表せるということと
そこで使われる複素数が複素ベキ乗根を使うため
実部虚部を実代数的に表せないだろうという予想とは
意味合いが異なる
問題意識を理解したのは>>96だけと書いたが
質問の答えではなかったので不十分・不満足と思っているが
不適切ではないと言っているのを>>306は理解できていないというのも残念
2017/09/07(木) 11:12:26.30ID:6DNo3zLu
2017/09/07(木) 11:12:42.51ID:6DNo3zLu
2017/09/07(木) 11:13:00.71ID:6DNo3zLu
2017/09/07(木) 11:13:15.89ID:6DNo3zLu
2017/09/07(木) 11:13:31.48ID:6DNo3zLu
2017/09/07(木) 11:13:48.72ID:6DNo3zLu
2017/09/07(木) 11:14:05.54ID:6DNo3zLu
2017/09/07(木) 11:14:22.27ID:6DNo3zLu
2017/09/07(木) 11:14:37.20ID:6DNo3zLu
2017/09/07(木) 11:15:11.93ID:6DNo3zLu
329132人目の素数さん
垢版 |
2017/09/07(木) 11:16:43.38ID:Iasheep5
5次以上では複素ベキ根と四則では貝を洗わせないものがあるという証明は厳密で素晴らしいし
4次までの解法についても先人の知恵と言うべきとは思うが
3次以上の方程式に実ベキ根と四則で表す方法がないかどうかとは別のこと
たぶんないと思うけどどう証明したらいいんだろ?
330132人目の素数さん
垢版 |
2017/09/07(木) 11:22:13.12ID:Iasheep5
あらかじめ書いておかないといけなかったかもしれないけど
複素数を実2次元と捉えることは複素数の理解としては
ある意味一般的ではあるものの
それが本質というわけではないので複素数を扱う限りは
複素四則とベキ根とが自由に使えるという立場が
実2次元と捉える立場を十分に尊重していなくても
まあそれも当然とは思っているのだけど
それを踏まえた上で実2次元というある意味一般的な理解から見た場合の
解の表記問題に疑問を持った訳です
2017/09/07(木) 12:02:17.51ID:6DNo3zLu
2017/09/07(木) 12:02:35.23ID:6DNo3zLu
2017/09/07(木) 12:02:51.64ID:6DNo3zLu
2017/09/07(木) 12:03:11.10ID:6DNo3zLu
2017/09/07(木) 12:03:27.87ID:6DNo3zLu
2017/09/07(木) 12:03:43.84ID:6DNo3zLu
2017/09/07(木) 12:04:12.51ID:6DNo3zLu
2017/09/07(木) 12:04:42.67ID:6DNo3zLu
2017/09/07(木) 12:05:01.89ID:6DNo3zLu
2017/09/07(木) 12:05:20.53ID:6DNo3zLu
341132人目の素数さん
垢版 |
2018/01/03(水) 23:24:10.81ID:OkPafi9+
久しぶり来てみたら、書き込みが絶えていた。
342132人目の素数さん
垢版 |
2018/01/05(金) 13:46:41.52ID:0kl09vxE
代数方程式の一般解法はある、って聞いた(何次であっても)
あたい素人だからよく判らないわ
2018/01/05(金) 22:59:58.19ID:qg8F76lp
「解」と「解法」とは異なるし「代数的に」解けることと解法があることとはこれも異なる
2018/01/19(金) 18:16:59.68ID:ujRq+81i
2018/01/19(金) 18:17:17.97ID:ujRq+81i
2018/01/19(金) 18:17:38.38ID:ujRq+81i
2018/01/19(金) 18:17:58.94ID:ujRq+81i
2018/01/19(金) 18:18:16.16ID:ujRq+81i
2018/01/19(金) 18:18:34.62ID:ujRq+81i
2018/01/19(金) 18:18:54.78ID:ujRq+81i
2018/01/19(金) 18:19:14.42ID:ujRq+81i
2018/01/19(金) 18:19:31.66ID:ujRq+81i
2018/01/19(金) 18:19:49.45ID:ujRq+81i
2018/02/05(月) 16:15:17.82ID:JLoaucHm
エクセル駆使の人の言う通り
arctanなりarccosなり使えば3次方程式は解ける
氏が「代数的解法」の文脈に乗らなかったのは幸か不幸か…

スレのテーマは代数的解法限定ではなさそうだからいいけどね
2018/02/12(月) 18:04:38.08ID:erBZJdKI
4次方程式の解の公式が知りたいんですけど、どこにありますか?文献等紹介してお願いします。
2018/03/05(月) 03:42:49.63ID:G91DujrK
うーん
357132人目の素数さん
垢版 |
2018/03/09(金) 15:31:05.97ID:VT9yENW4
>>355
カルダノの解法で3次方程式を解くのに3年かかった。

その結果があったので、フェラーリの解法で4次方程式を
解くのは2週間ほどだった。

フェラーリの解法で検索しなされ。
2018/03/11(日) 15:16:51.70ID:FjL+cLsQ
四元数みたいな実数、第一虚数、第二虚数、第三虚数の組というではなく
「虚数ではないし負数でもないが2乗すると実数になるのに実数ではない数」が定義できれば
5~8次方程式を代数的に解けるかもね
これを第二実数とすれば、第二虚数も生じ第二複素平面が生じる
元々の複素平面と第二複素平面とで二階建て構造
物理学上の仮説、ホログラフィック理論の如し二階層ホログラフィック複素平面

…ん?ホログラフィック複素平面を狙ったんだが
何か円柱座標をベースにした3次元極座標の積層をイメージさせる様な
ホログラフィック複素平面の話に絞ってしまったな…
発想の限定制約は良くない
359Mad Chemist
垢版 |
2018/03/12(月) 09:56:19.72ID:/f5cTC0a
>>355

過去の書き込みしっかり読め。
>>139にあるだろうが。
2018/03/13(火) 08:26:44.84ID:zNXhNo/0
3次方程式は三角関数を使った式も有ったね
三角関数が含まれていても手続きとして代数的である事に限定すれば
代数的解法という事ができるね
4次方程式もデカルト、オイラー、ラグランジュの方法も有ったね
361132人目の素数さん
垢版 |
2018/03/13(火) 23:17:44.53ID:+gBKUk/g
四則演算と平方根を使うだけでは5次以上の方程式には一般解は無いが、
楕円関数論のリーマンのテータ関数を使えば5次以上の方程式にも一般解がある。
梅村浩先生の楕円関数論の付記2を参照されたし。
362Mad Chemist
垢版 |
2018/03/14(水) 11:49:37.72ID:5tkRZWLK
>>360

カルダノの解法ではxの三次方程式をチルンハウス変換して、
y^3 + py + q = 0 のyの三次方程式にする。
y = A + B とするのがカルダノの解法の肝である。
AとBの値が求まれば話が早い。 だがA^3 と B^3の値しか求められない。

それでもA^3 と B^3の値が実数なら計算を続行できる。
解は得られるが、重解か一実数解と二複素数解の場合だ。
相異なる三つの実数解の場合は解けない。

相異なる三つの実数解の場合は三角関数を利用したビエタの解法というのがある。
それによって求めることができた。

カルダノの解法では相異なる三つの実数解は解けないと諦めていた。
A^3 と B^3の値が複素数になる場合である。
よく見ると共役複素数の関係になっている。
極座標に変換して、角の三等分をやって計算を続けたら、カルダノの解法でも
相異なる三つの実数解の場合も解けることが分かった。


>>361
5次方程式ではチルンハウス変換を3回やって、
y^5 + py + q = 0 になるところまで、ラグランジュがやったそうである。
そこから先はやれなかったように聞いている。

ちょうどその辺を知りたかった。
何年かかりになるか分からんがセミリタイアの状態なので、死ぬまでには
解いてみたい。
情報ありがとう。
2018/03/14(水) 12:57:08.94ID:shzKbI/n
狂化学者、3次方程式をもっとスマートに書き記せぬものか?

>>361
物理学のホログラフィック理論も楕円関数が必要だった様な…

ホログラフィック接続(仮称)なる手法(仮説)が有って
何でも複素記述できる時代にならんもんか

まぁアーベルやガロアが示した以上、複素表現単体で記述できるわけなく
ホログラフィック接続なる手法が複素記述の範疇を超える表現を補完する
次元コンパクト化の手法になるんだろうけどね
つまりホログラフィック接続自体は複素記述で編成できる手法ではないね

でもそんな接続手法が虚説ではなく確立された日には
数学界どころか理工学界の裾野が下がるね

積分も積算シコシコみたいな原理を微分みたいに一発ポンな計算に出来ないかねぇ
留数定理みたいに一発ポン尚且つ汎用性が有る様な…
364Mad Chemist
垢版 |
2018/03/14(水) 16:38:53.12ID:5tkRZWLK
>>363

いろいろ試行錯誤して、3次方程式と4次方程式を
解けるようになったのである。
その流れを書き込んだ次第だ。
お前の嗜好に合わせてやる義理はない。
理解したければ自助努力でやれ。
理解できなければお前の頭が悪いのだ。
お前な、Fランク卒か?
2018/03/14(水) 19:04:24.70ID:k62EGx+4
αn :=Sol[{a,b,c,d,w,f},n]==Root[a #^5+b #^4+c #^3+d#^2+e #+f,n] で
不都合があるの?
2018/03/15(木) 04:24:10.44ID:fSXCtLVP
>>364
一言一句違わず誰も居ない海辺で俺と対峙して言ってみろ

人間界は人と人とで成り立っている事が分からん様だ
2018/03/15(木) 05:48:36.98ID:Ad5Ff/ip
>>363
微妙に工学系の学部ぐらいの知識はあるようだが
ホロノミーとか接続とか共変微分の知識もないようなのがドヤ顔で寝言言いながら突っ走ってもトンデモにしかなれんぞ。
368132人目の素数さん
垢版 |
2018/03/15(木) 09:09:02.97ID:EvW0DhIm
>>366
>俺と対峙して言ってみろ

意味不明。 頭悪いんだろうな。

名無しの卑怯者か?
369Mad Chemist
垢版 |
2018/03/15(木) 15:36:34.60ID:EvW0DhIm
この本で用が足りそうである。
まずは本屋に注文しておこう。

代数方程式の話
http://www.rokakuho.co.jp/data/books/0202.html
2018/03/16(金) 06:20:23.00ID:VnMbgadq
>>367
岡潔もそう言われてたよなぁ

>>368
口の聞き方をお父さんお母さんに教えて貰わなかったのかなぁ、って話をしてるんだよ
371132人目の素数さん
垢版 |
2018/03/16(金) 07:14:42.55ID:wYgAMg6K
>>361
必要な関数を広げればそりゃ5次方程式の解は表現できる
一番楽なのはMATHEMATICA的に

5次方程式の係数から5つの解を与える関数

を使うこと
けどこれじゃさすがに何もやってないのと同じだから
2018/03/16(金) 20:18:39.07ID:8gcigXBd
>>370
オカケツのなりきりやるならもっとまじめに取り組んでいただきたい。
猿でももう少し上手な猿まねとか狂態の真似事して見せよう。
373Mad Chemist
垢版 |
2018/03/19(月) 13:22:03.16ID:F1hwA3dc
>>370
>口の聞き方をお父さんお母さんに教えて貰わなかったのかなぁ、って話をしてるんだよ


名無しの安全圏内からこそこそ悪口を書き込むような行為を卑怯無責任とお父さんお母
さんから教えて貰わなかったのかな。


>>371
5次方程式 ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0 があって、
a ~ b までの値を入力すると、さらさらと解が求められるのを
つくるのを最終目標としている。
MATHEMATICAは安くなったと聞いたので、それもやってみようか。

DKA法というのがあって、5次方程式、6次方程式が解けるらしい。
これについては情報収集中。
何かご存知の方、アップして下さい。
374Mad Chemist
垢版 |
2018/03/19(月) 15:39:33.65ID:F1hwA3dc
恥ずかしながら誤入力していた。
a ~ f までの値を入力すると、 である。
375Mad Chemist
垢版 |
2018/03/27(火) 21:12:46.83ID:dVOG9sWe
>>369
「代数方程式のはなし」購入した。
これで5次方程式解けるぞと思っていたが、なかなか大変。
まあ試行錯誤していこう。


>>361
東京大学出版会  梅村浩著  「楕円関数論」
「代数方程式のはなし」で考文献として書いてあった。
これでいいですかね。
税込み5,184円 ちょっと高いが、「代数方程式のはなし」読み
終わったら買ってみようかな。
376132人目の素数さん
垢版 |
2018/04/04(水) 11:22:10.80ID:dFWjz12T
>>342
解があるだろ。
377Mad Chemist
垢版 |
2018/04/05(木) 11:01:10.25ID:JyzBYuCk
>>376

過去の書き込みを読み直せ。

代数的には、5次以上での解の公式が見つからない。



ルフィニ、アーベル、ガロアの研究により
代数的には、5次以上では解の公式が存在しないことが証明。

という流れだ。

講談社 BB 中村亨(りょうと読むらしい)著 「ガロアの理論」
これ読んどけ。

私は薄学非才ながら、代数的ではない手法にいろいろアプローチ
してるところだ。
378132人目の素数さん
垢版 |
2018/04/05(木) 23:37:51.84ID:VG+KzeOa
>>377

アホ
379132人目の素数さん
垢版 |
2018/04/05(木) 23:40:57.26ID:VG+KzeOa
複素数係数の代数方程式は複素数の範囲内で次数と同じ数の解を必ず持つ。
(重複度込みで考えれば)
代数学の基本定理な。
380132人目の素数さん
垢版 |
2018/04/05(木) 23:47:18.08ID:VG+KzeOa
因みに、代数学の基本定理を証明したのはガウスだが、
彼はアーベルの「五次以上の代数方程式は解の公式が存在しない」と言う論文を見て
「嫌な論文を書く奴がいるな」と言ったと言う逸話が残っている。ガウスは何か勘違いしたらしい。
解が存在すると解の公式が存在するとをガウスですら混同するんだから、君らが勘違いしてもしょうがないんだろうけどね。
2018/04/05(木) 23:50:26.96ID:G7hZIHLe
些細な言葉の解釈の違いで勝手に突っ走る
アホはおまえだ
2018/04/07(土) 15:58:35.84ID:r+JS4+jT
>>373
悪口言い出しっぺのお前が言い返せた事か?
2018/04/07(土) 16:00:30.62ID:r+JS4+jT
所で

>>1
> 実数の表現を拡張して、5次方程式の解の公式を一般化する為の実数の新しい表現を与えてやれば表現できるはず。
>
> ガロワはなんでそんな事に気づかなかったんだ?

んなもんが存在するとは思えないんだが…
384132人目の素数さん
垢版 |
2018/04/07(土) 20:18:03.56ID:zhRWU3+y
>>383
>んなもんが存在するとは思えないんだが…
ベキ乗根以外の関数を導入しろってことでしょ
2018/04/07(土) 21:32:05.52ID:vNmvW/yd
x^5=ax+b の解を表す演算子 a#b があったらいいんじゃないか?
2018/04/07(土) 22:29:23.87ID:r+JS4+jT
数系と言ったり関数と言ったり演算子と言ったり忙しいな
2018/04/07(土) 23:03:19.27ID:qXHPeUsV
>>375
梅村「楕円関数論」は長い間品切れ状態だよ。アマゾン見たら古本にべらぼーな値段がついていた。
再版してくんないかな。
2018/04/08(日) 09:32:11.13ID:Q7nh09vl
2018/04/08(日) 09:32:28.83ID:Q7nh09vl
2018/04/08(日) 09:32:50.90ID:Q7nh09vl
2018/04/08(日) 09:33:07.78ID:Q7nh09vl
2018/04/08(日) 09:33:29.31ID:Q7nh09vl
2018/04/08(日) 09:33:46.97ID:Q7nh09vl
2018/04/08(日) 09:34:05.17ID:Q7nh09vl
2018/04/08(日) 09:34:29.10ID:Q7nh09vl
2018/04/08(日) 09:34:47.99ID:Q7nh09vl
2018/04/08(日) 09:35:09.77ID:Q7nh09vl
2018/04/08(日) 09:54:38.84ID:9smjhpPV
増田哲也いい加減にしろ
2018/04/08(日) 10:33:16.84ID:Q7nh09vl
2018/04/08(日) 10:33:35.37ID:Q7nh09vl
2018/04/08(日) 10:33:55.75ID:Q7nh09vl
2018/04/08(日) 10:34:15.31ID:Q7nh09vl
2018/04/08(日) 10:34:36.20ID:Q7nh09vl
2018/04/08(日) 10:34:55.67ID:Q7nh09vl
2018/04/08(日) 10:35:14.15ID:Q7nh09vl
2018/04/08(日) 10:35:33.55ID:Q7nh09vl
2018/04/08(日) 10:36:01.13ID:Q7nh09vl
2018/04/08(日) 10:36:24.20ID:Q7nh09vl
409132人目の素数さん
垢版 |
2018/04/12(木) 22:36:28.60ID:kS9A031G
5次方程式以降は、
「x+1=0の解を自然数で答えろ」って言われてるようなもんだから、答えようがない。
実数、虚数を超えた概念が必要かと。
410132人目の素数さん
垢版 |
2018/04/13(金) 10:31:00.52ID:QM/LhN6E
実数虚数は超えなくてもいい
2018/04/14(土) 18:23:08.88ID:iy/2tTS5
亨をどう読んだらリョウになるんだよ
412132人目の素数さん
垢版 |
2018/04/14(土) 19:01:35.76ID:EzkicfoM
>>411
りょうだろ
413Mad Chemist
垢版 |
2018/04/14(土) 20:12:39.64ID:UKk/wfsl
間違えてました。
「あきら」でした。
2018/04/18(水) 01:37:53.46ID:yEKYziJ6
2018/04/18(水) 01:38:11.70ID:yEKYziJ6
2018/04/18(水) 01:38:30.21ID:yEKYziJ6
2018/04/18(水) 01:38:48.16ID:yEKYziJ6
2018/04/18(水) 01:39:05.68ID:yEKYziJ6
2018/04/18(水) 01:39:25.48ID:yEKYziJ6
2018/04/18(水) 01:39:44.31ID:yEKYziJ6
2018/04/18(水) 01:40:01.63ID:yEKYziJ6
2018/04/18(水) 01:40:21.92ID:yEKYziJ6
2018/04/18(水) 01:40:45.86ID:yEKYziJ6
424132人目の素数さん
垢版 |
2018/04/18(水) 09:10:44.66ID:7PR2a5Tj
\で埋まってこのスレ終了する。

¥はそれがうれしいのだろう。
2018/04/21(土) 00:15:01.95ID:egA1fDFk
2018/04/21(土) 00:15:23.54ID:egA1fDFk
2018/04/21(土) 00:15:44.51ID:egA1fDFk
2018/04/21(土) 00:16:05.24ID:egA1fDFk
2018/04/21(土) 00:16:25.44ID:egA1fDFk
2018/04/21(土) 00:16:46.99ID:egA1fDFk
2018/04/21(土) 00:17:08.97ID:egA1fDFk
2018/04/21(土) 00:17:30.43ID:egA1fDFk
2018/04/21(土) 00:17:49.60ID:egA1fDFk
2018/04/21(土) 00:18:12.33ID:egA1fDFk
435Mad Chemist
垢版 |
2018/09/15(土) 11:14:46.36ID:us+xtc3b
5次方程式の解法は全く進んでない。
今までやってきた奴の、整理や改良をやっている。
そこで一つ疑問が出てきた。
数学科の出身ではないので、賢い皆さんの意見を伺いたい。

Z = a + b i を、Z = r (cosθ + i sin θ) に変換する。

a = b = 0 の場合、r = 0 は分かるが、θは幾らになるだろうか。

分ったところでどうってことは無いのだが、エクセルで解くと変な表示に
なってしまうので、うまい処理はないかと思い悩んでいる。
方程式を解くについては関係ない、枝葉の事象なんだが。
2018/09/15(土) 15:05:42.31ID:Cj616Aoo
[Z=a+b*i=r∠θ]&[a=b=0]⇒[r=0]&[θ=不定]
+0と-0を区別する様なもの
437132人目の素数さん
垢版 |
2018/09/17(月) 21:38:48.66ID:dvvtHEzs
>>436
書き込みありがとう。
やはり不定ということかな。
エクセルではIF関数を使って、a = b = 0 の場合の設定でも
入れておこうと思う。
へんてこな手法でなく、根源的な解法はないかと薄学非才
ながら考え続けている。
438Mad Chemist
垢版 |
2018/10/27(土) 18:33:15.19ID:N2RdIVZ2
講談社学術文庫 木村俊一著 「天才数学者はこう解いた、こう生きた」 1,000円

読み物としては面白い
実際に式の誘導なんかもあったらいいのだが、文庫本にそこまで求めてもね。
文庫本で1,000円とは高くなったね。
439132人目の素数さん
垢版 |
2018/12/17(月) 11:17:01.72ID:Axc+hHHo
書き込みないねえ。
どなたか意見ないの?
2018/12/17(月) 12:58:12.86ID:jLLsWQNK
有識者は学術系SNSへと消えた、ここは掃き溜め
441132人目の素数さん
垢版 |
2018/12/17(月) 20:03:51.59ID:HBSL9bGQ
>5次方程式の解を表現できる数体系

複素数だろ

貴様、ガウスの「代数学の基本定理」知らねぇのか?
442132人目の素数さん
垢版 |
2018/12/17(月) 20:06:49.55ID:HBSL9bGQ
>「解の公式」

何を以て解の公式と呼ぶかによるが、
いくらでも正確に解を近似する数値解法がある
それで実用上は十分 なんか文句あんのか?ゴルァ
2018/12/17(月) 21:47:46.95ID:38sRBfQN
久しぶりに見たけど良いスレだな
2018/12/17(月) 23:35:49.93ID:ByUL/hrz
>>438
メチエの時はもっと高かった
445132人目の素数さん
垢版 |
2018/12/18(火) 04:54:51.02ID:mhxxCFZv
>>1
何かしたいという気持ちがあるのはわかる。
しかし、何ができるのか何ができないのかがわかっていないから、
何がしたいのか自分自身わかっていないんだろうな。
5次方程式の前に、実数とは何かを勉強した方がいいと思う。
数学は、基本をおろそかにしたら、悲しいくらい何もできないよ。
446132人目の素数さん
垢版 |
2018/12/18(火) 06:56:45.33ID:htbpCNG6
そもそもどんな代数方程式にも複素数の解が存在し
いくらでも正確に数値解を求める方法がある

だから(代数的な)解の公式がないことに
発狂する必要はない
2018/12/18(火) 13:54:30.35ID:IssabeBV
・復素5~8整数次方程式は複素解で表現し得る事がガウスにより示されている
・一方で代数的一般解法の為には
1、2次方程式には2象元必要、実数体
3、4次方程式には4象元必要、複素数体
5~8整数次方程式には8象元必要、4元数体
2^(n-1)+1~2^n整数次方程式にはn象元必要
・代数的一般解法は可換体上でのみ成立する
・4元数体は非可換体である

無理無意味無駄無用
448132人目の素数さん
垢版 |
2018/12/18(火) 19:32:21.34ID:htbpCNG6
>>447
代数的って言葉の意味、勉強してから出直してこい
2018/12/18(火) 21:10:27.32ID:IssabeBV
だが断る
2018/12/22(土) 03:10:45.66ID:93KzYEIS
>>447
バカなのはわかった
それに復素はまだしも象元ってなんだよ
2018/12/22(土) 08:30:22.02ID:nvIg0+vD
あれだろグラフを上下左右に区切って左上、右上とかを表すやつ。
2018/12/22(土) 08:46:50.37ID:lwAytAjK
>>451
それ、象限な
で、4元数体は4次元だから16象限だけどな

>>447はネタぽいなw
2018/12/22(土) 09:41:27.22ID:93KzYEIS
>>452
2次方程式の時点で複素数解あるもんなw
2018/12/22(土) 13:03:00.60ID:VcXYXFS0
象の元だ
455Mad Chemist
垢版 |
2018/12/22(土) 22:36:14.02ID:5nyQYy0W
久しぶり書き込みがあったが、内容的にはどうもイマイチ。
数学科卒の賢い人が何かを書き込んでくれるか期待しているのだが。
2018/12/22(土) 23:10:48.21ID:hCqQrTeB
化学はバカ学なの?
2018/12/22(土) 23:55:03.87ID:M6V9Q24X
新しい数体系を作れば表現できるだろう→アホ数学。複素数ですでに十分だしw

解の表現より重要な「ガロア群」の発見に至る→天才の数学
458132人目の素数さん
垢版 |
2018/12/23(日) 17:46:27.35ID:WKNHtnXv
ヒカキンの年収が10億超え!?明石家さんま・坂上忍も驚愕の総資産とは??
https://logtube.jp/variety/28439
【衝撃】ヒカキンの年収・月収を暴露!広告収入が15億円超え!?
https://nicotubers.com/yutuber/hikakin-nensyu-gessyu/
HIKAKIN(ヒカキン)の年収が14億円!?トップYouTuberになるまでの道のりは?
https://youtuberhyouron.com/hikakinnensyu/
ヒカキンの月収は1億円!読唇術でダウンタウンなうの坂上忍を検証!
https://mitarashi-highland.com/blog/fun/hikakin
なぜか観てしまう!!サバイバル系youtuberまとめ
http://tokyohitori.hatenablog.com/entry/2016/10/01/102830
あのPewDiePieがついに、初心YouTuber向けに「視聴回数」「チャンネル登録者数」を増やすコツを公開!
http://naototube.com/2017/08/14/for-new-youtubers/
27歳で年収8億円 女性ユーチューバー「リリー・シン」の生き方
https://headlines.yahoo.co.jp/article?a=20170802-00017174-forbes-bus_all
1年で何十億円も稼ぐ高収入ユーチューバー世界ランキングトップ10
https://gigazine.net/news/20151016-highest-paid-youtuber-2015/
おもちゃのレビューで年間12億円! 今、話題のYouTuberは6歳の男の子
https://www.businessinsider.jp/post-108355
彼女はいかにして750万人のファンがいるYouTubeスターとなったのか?
https://www.businessinsider.jp/post-242
1億円稼ぐ9歳のYouTuberがすごすぎる……アメリカで話題のEvanTubeHD
https://weekly.ascii.jp/elem/000/000/305/305548/
世界で最も稼ぐユーチューバー、2連覇の首位は年収17億円
https://forbesjapan.com/articles/detail/14474
年収25億円の7歳児、世界で最も稼ぐユーチューバーに
http://mevius.5ch.net/test/read.cgi/illustrator/1543884071/l50
2018/12/23(日) 23:57:05.15ID:vpePecew
・復素5~8整数次方程式は複素解で表現し得る事がガウスにより示されている
・一方で代数的一般解法の為には
1、2次方程式には2象限必要、実数体
(但し2次方程式完全記述の為には4象限必要、複素数体)
3~4整数次方程式には4象限必要、複素数体
5~8整数次方程式には8象限必要、3元数体不在の為、16象限ある4元数体
2^(n-1)+1~2^n整数次方程式にはn象元必要
・代数的一般解法は可換体上でのみ成立する
・4元数体は非可換体である

よって無理無意味無駄無用
2018/12/24(月) 01:05:29.69ID:E2NZRO1I
みんな大好きうぃきぺであに書いてあったよ

四則演算と通常の冪根をとることに加えて超冪根(英語版)(すなわち既約な方程式 x5 + x - a = 0 の唯一の実根)をとる操作も「代数的操作」として許容した場合、この拡張された意味において一般五次方程式が「代数的に」解けることが知られている。
2018/12/24(月) 01:12:23.26ID:E2NZRO1I
なかなか面白い
http://d.hatena.ne.jp/Hyperion64/touch/20140807/p1
任意の五次方程式の解が構成する五角形がどういう形なのかは代数的数でないという事はやはり定規とコンパスで描けないのかね。直感ではできそうな気もするが。
2018/12/24(月) 08:08:15.05ID:Kv3x4/Ct
トンデモくさいな。図形と方程式の解法との関係が明らかじゃない。
ちなみに円周等分方程式が根号で解けるのも、素数p=2^n+1角形
なら定規とコンパスで作図可能だというのも
すべてガロア群の性質から来ている。
2018/12/24(月) 08:23:01.73ID:z4WCWd69
別にガロア群みたいな大層なものを持ち出さなくてもよい
2018/12/24(月) 09:34:28.85ID:Kv3x4/Ct
ガロア群は別に大層なものじゃない。
数学科の3年くらいで習う、現代代数学の基本的事項。
ガウスは円周等分方程式の代数的解法を"Disquisitiones Arithmeticae"
の第7章で詳述しているが、ガロア理論を分かった立場で書けば
ずっと見通しよく少ないページ数で済ますことができただろう。
2018/12/24(月) 09:53:05.71ID:Kv3x4/Ct
エルミートが楕円函数を使った5次方程式の解の公式を示したとか
どういう特殊函数を使えば高次方程式の解が表せるとか
そういう研究もガロア理論を使ってできる。
数学者はあんまり面白いと思わなくなったから
現代では見捨てられてる(メインではなくなった)だけじゃね。
2018/12/24(月) 10:09:51.84ID:Kv3x4/Ct
フェリックス・クライン著
正20面体と5次方程式 改訂新版 (シュプリンガー数学クラシックス)

とかあるね。原著は100年以上前だろう。
2018/12/24(月) 11:20:26.95ID:6x1m4VzI
>>461
(有理係数)5次方程式の解は代数的数だぞ
方程式の「代数的に解ける」とは少し用語の意味が違う

定規とコンパスで書ける数はそれよりさらに狭い。3次方程式の時点で解が作図できないものはある
2018/12/24(月) 13:35:14.38ID:6x1m4VzI
代数的数
……有理係数多項式の零点になる数。冪根と四則で書けるか否かは問わない。

方程式での所謂「代数的に解ける」という言い方(誤解を防ぐため「冪根で解ける」と言うことも)
……数が冪根と四則で書けること。

定規とコンパスで作図できる(作図可能数)
……数が平方根と四則で書けること。

というわけで後のものほど狭い。
既約3次方程式の解はどれも冪根で解けるが作図できない。角の3等分ができないのもこれに起因。
既約5次は冪根で解けるのと解けないのがある。作図できない。
2018/12/24(月) 14:51:45.05ID:z4WCWd69
>>464
群論を使わなくても良いということ
2018/12/24(月) 16:20:09.98ID:z0dLu659
立方根を作図する事はできないのか。出来るとしたら定規とコンパス以外にどんな道具があれば良いのか。
471132人目の素数さん
垢版 |
2018/12/24(月) 16:46:03.12ID:Ti2szrnT
折り紙
2018/12/24(月) 23:10:18.53ID:K/dl8rQl
>>358

> 「虚数ではないし負数でもないが2乗すると実数になるのに実数ではない数」が定義できれば

通常の数学では所謂超複素数で複素数を拡張するが、用語としては超複素数の要素で実数以外を虚数と呼ぶので、用語的にはそのような数はない。
超複素数では二乗して実数になる複素数に含まれない要素も扱い、本質的にはそれらは
二乗して-1になるもの
二乗して0になるもの
二乗して1になるもの
だけ考えればよいことがわかっている。
しかし、二乗して-1になるもの以外を含むような超複素数は一般に割り算ができない。だから、四元数を扱うことが多くなる。
割り算ができなくていいのなら三元数だろうが十六元数だろう百二十八元数だろうが作るだけなら作れるが、割り算もできるようにしたければ四元数と八元数以外に複素数の拡張はできない。
2018/12/24(月) 23:35:52.43ID:6x1m4VzI
作図器具の追加だと、思いっきり「角の3等分器」というのがあるな

折り紙にも折り紙公理の他に追加すれば5次方程式を解けるようになる操作があるらしい
2018/12/25(火) 01:17:03.93ID:+3399BwR
ガウスは円周等分方程式という1の原始n乗根がみたすQ上φ(n)次の既約方程式が代数的に解けることを示した。
φ(n)はオイラーのφ函数。特にn=p(素数)ならば、φ(p)=p-1。
ガウスは次数が無限に増加していく方程式の無限列の代数的解法を一挙に示したわけである。
(p-1が2のべきならば、正p角形が定木とコンパスで作図可能であることを含む。)
しかし、ガウスはこれらの代数方程式の「解の公式」を示したのではないことは注意すべきだろう。
2018/12/25(火) 01:21:56.72ID:+3399BwR
「解の公式」と言った場合、その意味を「方程式の根を係数の函数として表す式」
のことだとして、その式に我々が期待することは、実は何らかの意味ある情報が
読み取れることなのである。
(数値解法であれば様々なアルゴリズムが知られており、根号による解法は全く効率的ではない。)
しかし、「公式」に意味があると思うのは、我々が「良い公式」を見慣れている
ことから来る錯覚に過ぎない。
たとえば「n番目の素数を表す公式」は実は存在する
https://primes.utm.edu/notes/faq/p_n.html
が、これらの公式から読み取れる情報はほぼ無く
エラトステネスの篩の方が遥かに直接多くのことを示している。
つまり「公式」と言っても「良い公式」でなければ、数学的にはほとんど無意味
ということもあるのだ。
2018/12/25(火) 02:13:07.73ID:9BW8G46x
>>474-475
知識はあるけど知恵はない人の文章
2018/12/25(火) 04:46:05.96ID:PCgkeRuy
>>472
実数でも虚数でもなく2乗して実数になる数なども有り得ず
4象限を超える体系は可換体ではない
結局やっぱり、5次方程式の代数的解法一般公式は存在しないわけね
それも>>1が指摘する数体系不備などではなく、と
やはり数値的解法や超越的解法にしかならんわけね
2018/12/25(火) 04:58:16.53ID:PCgkeRuy
はて?じゃあ一方、超越的解法は幾らでも高次でも解けるんだろうか?
2018/12/25(火) 06:58:00.11ID:5TGd/gMB
梅村の「楕円関数論」に超越積分というのを使えば六次以上の方程式も解けると書いてあるそうだよ。
2018/12/25(火) 09:48:10.75ID:V4w5pTHY
て言うか、二次方程式にしても、三次方程式にしても、
「解の公式できました」
→「この記号(√)は二乗してその数になる数という意味です※正確な値は解らないけど」

→「この記号(i)は二乗して-1になる数です※実数にないけど」

とか言われても普通は納得しないよなぁ。


新しい数の定義を都合よく作り出して問題解決したと言い張るのはサッカーで試合が始まってゴールポストを動かすのと同じなんじゃないのかな。
2018/12/25(火) 17:33:40.69ID:9BW8G46x
>>480
平方根や立方根は正確な値を計算できるよ
大昔は中学高校の数学で習った
n乗根を筆算で計算することも一応できる
482学術
垢版 |
2018/12/25(火) 19:25:30.48ID:VsuUH61A
5ch企画か。 
483学術
垢版 |
2018/12/25(火) 19:26:07.79ID:VsuUH61A
代数分野がいいだろうな。代タイプ打ち 代筆談。
2018/12/25(火) 20:24:05.88ID:Mz0+TgKZ
>>481
無理数なんだから無限に近似できるってだけだろ。
2018/12/25(火) 20:52:42.10ID:Mz0+TgKZ
要するに無理数の存在しなかった世界では√2なんてのは得体のしれない実在するかもわからない数だったわけだよ。
それに記号を与え定義し二次方程式の解を一般化して三角関数や幾何学にまで応用していって得体のしれない平方根という物を実体のある数学的対象に拡張していったのは当時の天才の想像力によるものだよ。

複素数も同じ。三次方程式の解を一般化するにはどうしても必要で定義されたが、電磁気学や解析学に応用され立派な実体のある数学的対象となった。

このスレで論じてるのは五次方程式の解が代数的数でないという事に思考停止して五時方程式の解を表現できる超代数的数の体系が持つ性質を研究するのを放棄すべきでは無いのではないかという事である。
486学術
垢版 |
2018/12/25(火) 21:00:30.39ID:VsuUH61A
なるほど。
2018/12/25(火) 21:11:23.72ID:9BW8G46x
>>485
梅村浩の結果じゃ駄目かい?
2018/12/25(火) 21:24:20.27ID:PCgkeRuy
>>479
へぇ、超越積分で何次までででもいけるんだ
でもまぁどんどん繁雑度は上がるんだろうね

>>481
その大昔に習ったのがホーナー法の和算式筆算版、開平計算、開立計算を含む開方計算ね
数値解法としての求値速度効率は低いが一桁ずつ求めていける利点がある
2018/12/25(火) 21:38:11.92ID:9BW8G46x
>>484
有理数の平方根はコンパスと定規で長さを正確に作図できるよ
2018/12/25(火) 21:45:18.60ID:PCgkeRuy
ふむふむ
https://ameblo.jp/accade/entry-10479355318.html
https://mathtrain.jp/sqrtsakuzu
2018/12/25(火) 23:07:39.45ID:+3399BwR
代数学も知らない阿呆の立てたスレw
5次だろうが何次だろうが、方程式の係数が代数的数ならその根は代数的数。
係数が何だろうが、既約多項式の根を添加した体は係数体上の代数拡大。
係数体をKとして、その多項式環をK[x]とおく、方程式を定める多項式をf(x)とおくと
f(x)=0の根を添加した代数系はK[x]/(f(x))という剰余環で記述できる。
ちなみに実数体上の既約多項式の次数はすべて2以下になるという主張が「代数学の基本定理」
2018/12/25(火) 23:15:41.99ID:+3399BwR
梅村浩の超幾何函数で根をあらわす「公式」を弟子(?)の山下純一が紹介して
「これが公式か」と何かの本で書いてたけど、確かに違和感があって、何がダメか分かった。
だから、「公式」そのものに意味があるというのが妄信なだけ。
公式にあらわれている「情報」が大事
1のべき根だって、exp(2rπi/n)という立派な表示があるが
この表示からは、複素平面上で単位円周上の等分点になることは分かるが
定木とコンパスによる作図についての情報は得られない。
根号による解法理論が必要だったわけ。
2018/12/27(木) 12:18:46.37ID:XD5OVT5w
>>ID:+3399BwR
何かすげーすげー沸いてる小学生を鼻で笑う中二病みたいな事してるな
494132人目の素数さん
垢版 |
2018/12/28(金) 18:45:39.34ID:ZjqumJwb
体K上既約な多項式P(x)があたえられたときに、代数方程式P(x)=0の根は、

元 y を K上の代数的な関係 P(y)=0 を満たすものとして体Kに添加
して出来る代数拡大体 K(y) の中では、P(x)が完全に1次因子にまで
分解されるので、根を持つことがわかる。(その一つの根はx=yである。
他の本もyのK係数有理式として表せる)

一般に、体K上の既約な多項式全てをもってきて、それらの定義多項式
を用いて定義される代数的な元をすべてKに添加して得られるK上の
代数拡大体A(K)は、代数閉体となり、A(K)の中ではA(K)係数の代数
方程式は必ず根を持つ。
2018/12/29(土) 07:03:57.06ID:F/1ZnRkW
見事に「清書屋」行為してるだけ
2018/12/29(土) 10:13:40.97ID:1NZRD8UN
>>494
>K(y) の中では、P(x)が完全に1次因子にまで分解される~(~他の根もyのK係数有理式として表せる)

できたっけ?
「根のうち1つだけを添加した体」は「根を全部添加した体」より真に小さいことがあり、必ずしもできないと認識しているが。
たとえば K=Q, x^3-2, 根の1つに a=2^(1/3) を選ぶ場合
Q(2^(1/3))の元は実数しかないから虚な根は当然作れない。
1次×2次 (x-a)(x^2+ax+a^2) までしか分解できない。

Kになんか条件ついてるとか?
2019/01/04(金) 07:59:59.09ID:cbN6UHic
正に>>472の理屈を既に知っている記述された内容が併記されつつも
その解釈を横道に逸れているとして研究方針を変えなかった人による著

書籍詳細:5次方程式の代数的一般解法 計算編 - 文芸社
https://www.bungeisha.co.jp/bookinfo/detail/4-88737-894-7.jsp
ガロア理論によって解法不可能とされる5次方程式の代数的一般解法に新たな「知の鉱脈」を探究する

題名に計算編とあるが文芸社に頼み詳細を著作者に尋ねて貰ったら
「これが最初にして最後、続編は年齢の事もあり後世に委ねる」という回答されたと聞いた

知ってはいたにも関わらず続編を後世に委ねた辺り、理解はしていなかった模様
無い山を目指し続けてしまった
2019/01/04(金) 11:40:46.29ID:g4uyExi6
あけおめ

コンツェビッチとザギエが「周期」(数の名称としては不自然ではないか)と呼んでいる数の集合はどう?
ある種の積分で表すことができる数のことで、
代数的数の集合を真に含んでいるらしいけど……
誰か知らない?
2019/01/04(金) 12:49:04.52ID:9W6tqq0k
>>497
四元数八元数以外にも割り算可能で可換なn元数は一般のnに対してある!という内容の本も出版されている。
もちろん数学としてはゴミ。
2019/01/04(金) 13:15:23.16ID:cbN6UHic
>>499
と学会も呆然しちゃうなぁ
2019/01/05(土) 09:15:43.12ID:Dbl/m88n
また見つけてしまった…この人、学歴無し(小学校自主退学)ながら数々の職を経て学び
「L/Rネジ」と言う「ハードロックナット」とは異なる緩まない
IHIに採用されたネジを発明開発してるんだけど…

[PDF] 2015.11.7 Hiroshi Michiwaki 道脇 裕 ゼロのゼロ乗とゼロ除算 定義 http://www.next-innovation.com/assets/pdf/dbz11.pdf
[PDF] 100×0=0の真の意味 ~ゼロ乗算とゼロ除算 http://www.next-innovation.com/assets/pdf/dbz56.pdf
道脇裕の年収や経歴は!結婚した嫁に子供やゼロ除算って何? http://katzesokuhou.com/archives/3790
L/Rネジ - NejiLaw http://www.nejilaw.com/product.html
2019/01/05(土) 12:42:24.36ID:3T9NAABN
>>501
こいつのゼロ除算理論、東北のどこかの教授が賛同していたが、足立恒雄には一笑に付されていたな。
つーかゼロ除算スレに貼れば?
2019/01/05(土) 12:48:04.42ID:Dbl/m88n
こいつなんて呼べる人間じゃないぞ
2019/01/05(土) 13:09:52.28ID:xOBHwf60
代数的数の定義を拡張してn次方程式の解の公式を一般化したい
2019/01/05(土) 13:29:43.43ID:9V9Y0s/J
何で定義の拡張と公式の一般化がつながるんだい?
論理的に説明できる?
2019/01/05(土) 14:02:23.77ID:Dbl/m88n
>>504
残念。可換体の最終拡張である超現実数体や超現複素数体でも同じ事だ。
そこから先の元は最早、数ではなくゲームという概念になる模様。

>>過去の俺
超現実数は可換体。拠って超現実数体でも0.999…≠1とは成らない。
2019/01/05(土) 14:07:58.19ID:9V9Y0s/J
ゼロ除算、代数的に解けない方程式を解く て何か似てるね。
できないからやりたくなる。角の三等分も同じw
「角の三等分家」で検索してみなよ。よく似た心理だと思う。
できないことには意味があるとは考えられない。
ベキ根で解けないだけで、ベキ根(指数函数)を
拡張して別の特殊函数を使えば解けることもあるだろう。
ただ、そのことにどういう意味があるかは考えるべき。
2019/01/05(土) 14:14:11.24ID:9V9Y0s/J
数体系の拡張ていうなら、普通に正方行列って代数方程式(固有方程式)をみたすよね。
行列解だったら根号とか使わなくてもあらわせる。
線形代数勉強しろって話になるね。
2019/01/05(土) 14:21:23.69ID:Dbl/m88n
指数函数の逆函数である対数函数を求める事になり三角函数に行き着き
じゃあ楕円函数利用してんのと変わらないじゃんって事になる
2019/01/05(土) 14:51:09.09ID:5DELmrjz
超現実数は体じゃない。
超現実数にはすべての順序数に対応する数が含まれるから超現実数全体の集まりは集合にはならないので。
2019/01/05(土) 16:14:25.21ID:Dbl/m88n
超現実数体って擬似体なのか
集合ではない事を断った上で初めて順序体と言えてゲームのクラスなのか
ゲームもわけわかめ、クラスもわけわかめ、ふわぁ眠い
2019/01/05(土) 17:20:55.83ID:Dbl/m88n
いかんマジ妄想補完屋だ…誰からもy=1/xやy=tan(x)のグラフさえ描いて見せて貰えんのか
こんなんゼロ除算スレに貼ったら誤解伝染するわ…

[PDF]Hiroshi Michiwaki 道脇 裕 正接とゼロ除算
http://www.next-innovation.com/assets/pdf/dbz32.pdf#search='intitle%3A%E9%81%93%E8%84%87%E8%A3%95+intitle%3A%E3%82%BC%E3%83%AD%E9%99%A4%E7%AE%97'
513132人目の素数さん
垢版 |
2019/01/10(木) 21:41:05.74ID:24r+hKp+
デュラン・ケルナー・アバース法(DKA法)
2019/01/30(水) 01:54:09.51ID:oOrnvXwc
時代じゃのう
515132人目の素数さん
垢版 |
2019/02/16(土) 14:43:46.10ID:2/3tfoaH
>>497
どなたか、この本読み通された方いますか。
ほんとに5次方程式解けてましたか。
2019/02/16(土) 16:36:25.80ID:mDc7pXQK
>>515
そのひと有名なトンデモでしょw
解けてるわけない。
そんなゴミ本読むくらいなら、クラインの本をちゃんと読むべき。
2019/02/17(日) 11:43:36.27ID:CRBJaQRV
>>515
発売年の夏に読んだ。朝日新聞の広告に出てたんだ。朝日は理工学知識に関しては抜群だからな
日経が太刀打ちできない位に(但し流石に赤日、軍事や国事が関わる内容は除く)
もうそろそろ発売19周年か…内容は「ラグランジュ先生が見つけた「知の鉱脈」」云々
「オイラーの方法は便利だが邪道」云々で先ず5次方程式の前の足掛かりとして4次方程式から始まり
和の分解方程式なる羅列や謎の積分方程式を組み立て純代数学的一般公式に至ろうとした模様
Excel的に数多の計算値がどっさり記されていて
5次方程式にも突入しているが、やはり無い山を昇ってしまった模様
と言うか計算数値をどっさり載せている所から傍から見たら迷走にしか見えない内容だった
が、本人は王道を探った経緯を記した積もりで
>>497でも書いたが続編を後世に委ねている

5次代数方程式の楕円積分公式解がもっと知られ
そしてそれを更に純代数学的公式にはならない事が知られていれば…
いやでも、やっぱり、こういう人は三体問題の一般解とかを目指しちゃうんだろうなぁ
518515
垢版 |
2019/02/22(金) 20:06:23.78ID:2cjUe+0g
レスありがとうございます。
ひょっとしたらと思っていたけど、やはりだめでしたか。
a x^5 + b x^4 + c x^3 + d x^2 + e x + f = 0 の5次方程式に対して、
a ~ f の数値を入力したら、さらっと答えが出るようになるまでには
まだ道が遠いですね。
2019/02/22(金) 20:19:10.42ID:mXoQhWme
>>518
ガウスの代数学の基本定理により複素数解の存在は示されてる
数値解法でいくらでも正確に解を求めることができる

代数的解法に固執するのは精神異常者
2019/02/22(金) 20:37:09.44ID:+9SXmL8b
精神異常者とは思わんけど
典型的な「数学が分かってないひと」
2019/02/22(金) 21:18:22.76ID:mXoQhWme
数学が理解できてないことが理解できないのは精神異常
2019/02/22(金) 22:35:55.66ID:mtvp+P1W
460 132人目の素数さん sage 2018/12/24(月) 01:05:29.69 ID:E2NZRO1I
みんな大好きうぃきぺであに書いてあったよ

四則演算と通常の冪根をとることに加えて超冪根(英語版)(すなわち既約な方程式 x5 + x - a = 0 の唯一の実根)をとる操作も「代数的操作」として許容した場合、この拡張された意味において一般五次方程式が「代数的に」解けることが知られている。
2019/02/23(土) 02:13:20.74ID:IH77Wu0H
悪辣非道な悪魔・アベに延髄斬りとコブラツイストをーアントニオ猪木、小沢一郎、玉木雄一郎 2019 02 21
https://www.youtube.com/watch?v=pkSVf5maalg
2019/02/23(土) 04:10:39.78ID:GdATQwyE
>>522
数III方式~でかなりのところまで計算実行してみせたけど面倒くさくなったのか頁の都合かわからんがとにかく途中までで力尽きたんだったかな
2019/02/23(土) 04:37:20.82ID:maLzADpe
>>521
「飲酒の死亡リスクで飲み過ぎが高くなるのは当然だが全く飲まぬ場合より僅かに飲む場合の方が小さい」と言う
結論が導かれ、世界大多数の人が信じ込んだが実は「そもそも全く飲めぬ人も検査統計対象に入っていた」事が分かり
新たに統計結果を吟味され「飲酒による死亡リスクは量に対して単調増加」であると結論を改められた

何を言いたいか分かる?何で君のその意見と飲酒量死亡リスクの話と比べて述べたか分かる?

> 数学が理解できてないことが理解できないのは精神異常

その物の言い方が許されるなら
「飲酒の正しい量と死亡リスクの関係が理解できてないことが理解できないのは精神異常」
という言い方も許されて世界大多数が精神異常って事になる
その程度じゃ世間だけではなく専門医だって精神異常とは言わない
言うのは君みたいにすぐ精神異常と診断する医者気取りばかり
2019/02/23(土) 06:43:43.38ID:IH77Wu0H
              /::::::::ソ::::::::: :゛'ヽ、
            /:::::::-、:::i´i|::|/:::::::::::ヽ
              /::::::,,、ミ"ヽ` "゛ / ::::::ヽ
 こ の 嘘 で 、  /::::::==        `-::::::::ヽ
            ::::::::/.,,,=≡, ,≡=、、 l:::::::l
 騙 し 切 る 。  i::::::::l゛.,/・\,!./・\   l:::::::!
           |`:::| :⌒ノ/.. i\:⌒  .|:::::i
            (i ″   ,ィ____.i i   i //
 自 民 党      ヽ    /  l  .i   i /
             lヽ ノ `トェェェイヽ、/´
            /|、 ヽ  `ー'´ /
        ,---i´  l ヽ ` "ー-´/
      '´ ̄   |  \ \__  / |\_
          |    ゝ、 `/-\ | \ `ヽ
527515
垢版 |
2019/02/23(土) 13:35:12.41ID:gH8F3Gn5
急に意味の無い書き込みが続いている。
528学術
垢版 |
2019/02/23(土) 18:48:51.16ID:d4ZfVvuw
5ch だから 五次方程式なのか。
529132人目の素数さん
垢版 |
2019/02/23(土) 22:11:59.61ID:FQEps/pK
うまい。 座布団一枚。
530低学歴脱糞老女・清水婆婆の連絡先:葛飾区青戸6-23-19
垢版 |
2019/03/03(日) 09:56:56.06ID:KV/cokeJ
【超悪質!盗聴盗撮・つきまとい嫌がらせ犯罪者の実名と住所を公開】
①井口・千明(東京都葛飾区青戸6-23-16)
※盗聴盗撮・嫌がらせつきまとい犯罪者のリーダー的存在/犯罪組織の一員で様々な犯罪行為に手を染めている
 低学歴で醜いほどの学歴コンプレックスの塊/超変態で食糞愛好家である/醜悪で不気味な顔つきが特徴的である
②宇野壽倫(東京都葛飾区青戸6-23-21ハイツニュー青戸202)
※色黒で醜く太っている醜悪黒豚宇野壽倫/低学歴で人間性が醜いだけでなく今後の人生でもう二度と女とセックスをすることができないほど容姿が醜悪である
③色川高志(東京都葛飾区青戸6-23-21ハイツニュー青戸103)
※色川高志はyoutubeの視聴回数を勝手に短時間に何百何千時には何万回と増やしたり高評価・低評価の数字を一人でいくつも増やしたり減らしたりなどの
 youtubeの正常な運営を脅かし信頼性を損なわせるような犯罪的業務妨害行為を行っています
※色川高志は現在、生活保護を不正に受給している犯罪者です/どんどん警察や役所に通報・密告してやってください

【通報先】
◎葛飾区福祉事務所(西生活課)
〒124-8555
東京都葛飾区立石5-13-1
℡03-3695-1111

④清水(東京都葛飾区青戸6-23-19)
※低学歴脱糞老女:清水婆婆 ☆☆低学歴脱糞老女・清水婆婆は高学歴家系を一方的に憎悪している☆☆
 清水婆婆はコンプレックスの塊でとにかく底意地が悪い/醜悪な形相で嫌がらせを楽しんでいるまさに悪魔のような老婆である
⑤高添・沼田(東京都葛飾区青戸6-26-6)
※犯罪首謀者井口・千明の子分/いつも逆らえずに言いなりになっている金魚のフン/親子孫一族そろって低能
⑥高橋(東京都葛飾区青戸6-23-23)
※高橋母は夫婦の夜の営み亀甲縛り食い込み緊縛プレイの最中に高橋親父にどさくさに紛れて首を絞められて殺されそうになったことがある
⑦長木義明(東京都葛飾区青戸6-23-20) ※日曜日になると風俗店に行っている
531132人目の素数さん
垢版 |
2019/03/10(日) 10:13:15.95ID:ZCFJIjwy
そもそも何について考えたいのかを
数学的に記述できていないな
2019/03/12(火) 16:56:26.79ID:8u3hXo2b
https://www.youtube.com/channel/UCOlL_M-laPZxY3FXCBlDK2w
ヒトモドキニホンザル老害戦中ヒトモドキ自殺しろ
533132人目の素数さん
垢版 |
2019/03/12(火) 16:57:41.40ID:cXsn8cNN
4nhkZASDCwE

ニホンザルゴキブリ劣等ゴミ国産爆発スマホで自爆自殺しろ
534132人目の素数さん
垢版 |
2019/03/12(火) 16:59:53.15ID:uEGVIFhJ
https://jp.rbth.com/history/81660-1969-nen-chuuso-kokkyou-funsou

ロスケ負け犬飢餓奴隷民族ゴキブリ死ねゴキブリハゲ糞食いプーチン
535132人目の素数さん
垢版 |
2019/03/12(火) 17:01:08.74ID:z6H/jhBC
https://jp.rbth.com/lifestyle/81687-zagitowa-masaru-mosukuwa-nihonbunka-sai

障害者ニホンザルの国技レイプされる
ニホンザルはキチガイ人種レイパー
536132人目の素数さん
垢版 |
2019/03/12(火) 17:01:55.13ID:qeHxKh97
wikipedia.org/wiki/Poland_China

ヒトモドキアメ公ニホンザル白ゴキブリ豚自殺しろ
537132人目の素数さん
垢版 |
2019/03/12(火) 17:03:12.32ID:u3r+5Srh
http://otonano-kagaku.blogspot.com/2017/01/blog-post_23.html

雑種ニホンザルゴキブリイザナミの糞から生まれたニホンザル
538132人目の素数さん
垢版 |
2019/03/12(火) 17:04:13.18ID:NzDmxDq+
https://www.youtube.com/channel/UCY6k6CYx3JksEQTjge0MOSQ

キチガイニホンザルゴキブリ死ねよ
2019/03/12(火) 17:04:52.90ID:mDTRfzcO
YK8yZPy0XLs
7r12bBQ1fP8

劣等キチガイニホンザルゴキブリ抹殺しろ
540132人目の素数さん
垢版 |
2019/03/12(火) 17:05:30.24ID:/9Ofu/NB
https://www.mtsn.jp/journal/detail.php?id=482

障害者ニホンザルゴキブリは統合失調症
541132人目の素数さん
垢版 |
2019/03/13(水) 21:26:06.88ID:QxF+JBx0
レイパー自民ヒトモドキネトウヨ猿性獣レイパー玉無しゴキブリ出産奇形変態顔山口敬之が精神科で診断書取得被害者のふりをして発狂スラップ時雨沢恵一統一教会カルトキチガイ自民害虫トレパク糖質ヒトモドキの工作員自殺しろ
542132人目の素数さん
垢版 |
2019/03/20(水) 19:30:44.06ID:qneDoJKe
書き込みが劣化してきた。
2019/03/20(水) 19:45:38.29ID:SWf+iOO/
>>528
そういや2ちゃん時代は二次方程式スレだったな
2019/03/24(日) 17:08:37.50ID:RfSlYDe7
ブリング・ジラードの標準形はたしか一つのパラメータだけを含むので、それをaとするとき標準形の根をaの「異5乗根」とでも名付ける。一般にニュートン法などで近似計算できるのは通常の5乗根変わらないのでそう呼んでもいいだろう。
(一般5次方程式は代数的にブリング・ジラードの標準形に帰着される)

というような話が昔のカーマトーラス(東大数学科の同人誌)に出ていた。
2019/03/24(日) 18:01:10.87ID:yyeYbgLM
超冪根(ultraradical)かな?
2019/03/25(月) 01:47:09.18ID:xIXO7BVh
べき根というのは「べき剰余相互法則」など数論的構造と
関係する(あるいは調和解析、保形表現と関係する)
から重要なのであって、超冪根にはそのような性質はなく
はっきり言って下らないと思う。
志村五郎がそのようなことを書いていたし、それには100%同意する。
つまりそれは数学パズル家の数学であって
数学者のやる数学では全くないと思う。
547132人目の素数さん
垢版 |
2019/03/25(月) 02:31:10.48ID:YxSAgxS1
でも、ガウスやアーベルの時代にはそんなことほとんど知らなかったのに
代数的な解の公式にこだわっていたわけで
それがガロア理論として結実して様々な性質が分かるようになった事を考えれば
ゴローの言ってるのは後付けでしかないと思う
どんなものも注目される前から、いろんな性質が分かってるわけではないのに
2019/03/25(月) 04:43:39.85ID:WVenzqtU
>>547
君はどんな研究でもくだらなくは無いと思っているのか?
2019/03/25(月) 04:45:31.11ID:WVenzqtU
>>547
あと、超べき根の話はガロア、アーベルの後だ。
2019/03/25(月) 12:27:23.42ID:xIXO7BVh
>>547
べき根が代数的に重要な「構造」と関係しているという認識は当時もあったと思う。
ガウスが円分方程式のべき根解法で用いた"ガウスの和"="1のべき根のラグランジュリゾルベント"
は数論にも応用があり、直後かほぼ同時期くらいにガウス自身によって
べき剰余相互法則の証明に応用されている。
ガロア群から見ると、べき根を取るという操作は巡回群という単純群に対応している。
5次の場合は5次交代群という巡回群よりも格段に複雑な単純群が
あらわれることが障害となるわけで、それを扱ったのがクラインの本。
超べき根はセンスのないつまらない一般化にすぎない。
2019/03/25(月) 12:30:44.66ID:xIXO7BVh
単純群なのは素数位数巡回群ね。
2019/03/25(月) 13:18:20.90ID:xIXO7BVh
正確には志村五郎が言及したのは整数論の文脈で
超べき根を使った方程式の解法の話ではないが
数学者の考え方が分かるので文献を明示しておこう。
半世紀以上前、若き気鋭の数学者 志村五郎の論説
保型函数と整数論I
https://www.jstage.jst.go.jp/article/sugaku1947/11/4/11_4_193/_article/-char/ja/
の4ページ目くらい

(7) F(x)=X^n-a

たとえば,(7)がわかったならば,次にわれわれは
F(X)=X^n+bX+a
を考えるべきだろうか.少し考えてみれば,このような発想法が
非常に幼稚なものであることに気がつくであろう.
これは極端な例であるが,われわれはすでに存在する理論の
拡張を考えるとき,時としてこのような発想法におちいり易いのである.
もっと‘自然なもの’を求めなければ理論は進展しない.
2019/03/25(月) 17:45:08.12ID:gkMBBJhk
>>546
それに基本的に同意なんだけど、志村氏が例に挙げたのは純n次体Q(a^(1/n))で、こういう体の算術はよくわからないので、冪根で方程式の解を表すのは無意味だ、と言ってたと思いますよ。
2019/03/25(月) 17:46:16.94ID:gkMBBJhk
552でしたか。では上の文は取り消し
2019/03/26(火) 05:09:59.16ID:P8wtJJaT
コンウェイのアロー表記
3↑↑3=3^3^3
3↑↑↑3=3↑↑3↑↑3
556Mad Chemist
垢版 |
2019/06/04(火) 21:17:29.24ID:jZZEeEku
放送大学の「数学の歴史」でちょうど3次、4次方程式の
ところやってる。
557132人目の素数さん
垢版 |
2019/06/06(木) 23:06:15.87ID:SfVTDJQJ
>>49
F2={0,1}からF4={0,1,i,1+i}でiはi^2+i+1=0の根
558132人目の素数さん
垢版 |
2019/06/10(月) 00:15:37.27ID:L24w4NOZ
考えてみれば√2や1/3だって、2の平行根とか1÷3の答えというような間接的に数を表してるだけだな。
3除算は10数法はもちろん情報数学でよく使う16進法ですら割り切れんから「3で割り切れる数体系」と
として昔の人が角度や時間の単位に60進法を考えたのから角3等分作図ができなくても実用上補完できてる。
559132人目の素数さん
垢版 |
2019/06/10(月) 17:18:48.56ID:29A712XP
「街コロ」はカードゲームに興味ありな初心者の入門用に最適、サイコロを振って
カードを集めどんどん自分の街を発展させて勝利を目指せ
http://news.livedoor.com/article/detail/10962802/
経済が巡る!! 労働者と職場のマネジメントが癖になるワーカープレイスメント「ナショナルエコノミー」
http://bged.info/national-economy
風刺画「顧客が本当に必要だったもの」がアナログゲームに
https://headlines.yahoo.co.jp/hl?a=20180513-00000005-it_nlab-life
かわいいひつじを増やして増やして増やしまくれ! “一人用”カードゲーム『シェフィ』
http://www.moguragames.com/entry/shephy/
ゲムマ2018大阪・春での話題作「Liqueur the GAME (リキュール・ザ・ゲーム)」
http://www.comonox.com/entry/boardgames/open/Liqueur-the-GAME
素数大富豪 Lv.0それは「素数」と「大富豪」をくみあわせたたまったく新しいカードゲーム!
http://fukuroudou.info/game/primedaifugou-lv0
シノミリアを徹底解説!ギャンブル漫画の主人公になれる2人用ボードゲーム!
https://futariasobi.com/shinomiria_rule/
正体隠蔽系ゲームに革命『斯くして我は独裁者に成れり』の感想
http://www.unjyou.com/entry/2019/01/13/200000
理系魂を刺激するカードゲーム、技術者におススメ
https://tech.nikkeibp.co.jp/atcl/nxt/column/18/00160/091100061/
大富豪(大貧民)のようなカードゲーム「ReCURRRing(リカーリング)」
http://www.tk-game-diary.net/recurrring/recurrring.html
2019/06/11(火) 19:13:34.28ID:U3DFacTm
>>645
>http://oshiete.goo.ne.jp/qa/9055107.html
>可能無限は加算無限集合ですから

それ間違い

可算でも非可算でも無限集合なら実無限

可能無限とは無限集合を認めない立場だから

ω={0,1,2,・・・}
は無限公理によって存在が認められる無限集合
これ可算無限集合だから

ωのべき集合2^ω(ωの部分集合全体の集合)
これが非可算無限集合

哀れな素人氏は集合ωの存在は認めないでしょ
だったら可算無限集合は、可能無限ではないね

>>648
>お前の言葉で説明してくれ

工学馬鹿のスレ主に何を尋ねても無駄だよ

彼は誠意がないサイコパスだから
無知のくせに無知を隠蔽しようとする卑怯者
それがスレ主だよ
561132人目の素数さん
垢版 |
2019/06/11(火) 19:13:59.66ID:U3DFacTm
>>656
>自然数は、どこまでも増やすことが可能だから、
>これを可能無限と呼んでいる

おそらく

「今、作られている自然数の全体は有限個
 しかし、それは今後いくらも増やせる
 上限がないという意味で無限であって
 個数としては有限個」

といいたいのだろう

一方可算無限集合とは

「もはや付け加えるものがない
 自然数全体の完全な集合」

というもの
(当然要素は無限個)

したがって、可算無限集合は
実無限の立場で考えられたもの
であって可能無限ではない
2019/06/12(水) 00:18:55.88ID:Pfnm9/AD
>>560-561
お前、どこに向かって喋ってんの
563132人目の素数さん
垢版 |
2019/06/22(土) 00:34:04.78ID:lGa1H893
古代ギリシアで平方根が分数表現できないことで苦心したとか。もっとも分数でさえ間接的に数を表現しているにすぎないが。
564132人目の素数さん
垢版 |
2019/06/29(土) 16:32:16.81ID:DHiuKlHq
5次方程式の解を表現できる数体系
ふうL@Fu_L12345654321
学コン1傑いただきました!
とても嬉しいです!

https://pbs.twimg.com/media/D-IuUuqVUAALnAB.jpg

https://twitter.com/Fu_L12345654321/status/1144528199654633477
https://twitter.com/5chan_nel (5ch newer account)
2019/07/01(月) 00:44:12.71ID:opHrJ80D
>>564
荒らしか
566132人目の素数さん
垢版 |
2019/07/04(木) 00:32:13.24ID:WjmhsYjy
3215
ふうL@Fu_L12345654321
学コン1傑いただきました!
とても嬉しいです!

https://pbs.twimg.com/media/D-IuUuqVUAALnAB.jpg

https://twitter.com/Fu_L12345654321/status/1144528199654633477
https://twitter.com/5chan_nel (5ch newer account)
567132人目の素数さん
垢版 |
2019/07/20(土) 11:14:20.90ID:bSAoQnjE
1430
ふうL@Fu_L12345654321
学コン1傑いただきました!
とても嬉しいです!

https://pbs.twimg.com/media/D-IuUuqVUAALnAB.jpg
https://twitter.com/Fu_L12345654321/status/1144528199654633477
https://twitter.com/5chan_nel (5ch newer account)
568Mad Chemist
垢版 |
2019/10/21(月) 12:47:55.48ID:fzlmgZep
「天才数学者こう解いた、こう生きた」 に記載された年表より

1500頃 デル・フェロ 3次方程式を解決
1535  タルターニャ 数学勝負で勝つ
1543  フェーラーリ 4次方程式を解決
1545  カルダノ 「大いなる技法」出版
1823  アーベル 5次方程式に代数的な解の公式が無いことを発見
1829  ガロ ガロア理論発見
1844  アイゼンシュタイン 5次方程式の解の公式発見
1858  エルミート 5次方程式の解の公式発見

アイゼンシュタインは無限級数を使い、エルミートは楕円関数を使って
解の公式を発見したんだそうである。
2019/10/22(火) 12:29:39.23ID:W/MMX72X
クラインとか
2019/10/22(火) 12:37:20.75ID:W/MMX72X
>>557
そうだな
571132人目の素数さん
垢版 |
2019/10/22(火) 16:48:02.38ID:IRfZzmU0
>>568
5次方程式に代数的な解の公式が無いことを発見したのは
どっちかというとルフィニさんです

ラグランジュさんが考えた置換論を用いて計算しまくった結果、発見しました
ルフィニさんの論文に感動してコーシー噴いたコーシーさんが一般化された置換論を築いて
それを読んだのがアーベルさん

ど田舎に住んでたアーベルさんは、コーシーさんの置換論が出てきた経緯を知らず
5次方程式に使えるんじゃね?と里帰りのような事を始めたら
ルフィニさんがやった時よりも、厳密な証明ができましたって話なんで
2019/10/23(水) 02:33:07.65ID:EIJoqW5e
2年前にクレクレ君が言ってた「実代数的」なんだが
実根が「実冪根で表現可能」(expressive by real radical)という用語で存在している
実根しか持たないQ係数多項式では、根が実平方根のみで表せることが必要十分条件の一つ

複素根の実部が実冪根で表せるかどうかは
彼に自力でやってもらいましょう
573Mad Chemist
垢版 |
2019/12/30(月) 23:51:50.90ID:I/7hjdXX
どなたか5次方程式を解けた方、おられませんでしょうか。
574132人目の素数さん
垢版 |
2019/12/31(火) 16:59:29.70ID:VV/2i4lK
お客様の中に5次方程式が解ける方はいらっしゃいませんか~?
575Mad Chemist
垢版 |
2019/12/31(火) 21:23:20.17ID:Cq8d2q7r
3次と4次は解けたのだが。

解けたというよりは、ネットで調べた公式をエクセルで実行しただけだが。
2019/12/31(火) 22:22:11.10ID:v8f9lbVZ
5次代数方程式の一般解は超越形式で既出なのに超越形式の何が気に食わん?
代数形式一般解は存在せん事も、数体系を幾ら弄くってみて実数系に応用できる一般解にならない事も
もう分かってる事なんだから、先ず既出の超越形式での5次代数方程式一般解を調べてみれば?
2020/01/05(日) 21:39:51.81ID:Lv+Lz/Ps
ガロア群が位数10とかならまだ冪根で解くすべはあるぞ
(一般には120)
578Mad Chemist
垢版 |
2020/01/18(土) 19:18:58.89ID:gLrz3Z42
>>576
>5次代数方程式一般解を調べてみれば?

やってますけど、まだたどれてません。

どなたかお分かりの方、やってみた方おられますか?
2020/01/18(土) 20:27:17.63ID:Uff7Q/v5
俺分かるよ
580Mad Chemist
垢版 |
2020/01/19(日) 18:45:42.89ID:AH7ZUxkT
>>579
書名、著作者名、出版社名、URL等教えていただければ
非常に助かります。
581132人目の素数さん
垢版 |
2020/01/22(水) 10:47:33.85ID:IrO8w9Mf
肝心な情報は得られないねえ。
582132人目の素数さん
垢版 |
2020/01/24(金) 21:28:36.12ID:7o3sQ1m5
ふたばちゃんねるの荒らし 統合失調症 荒らし キチガイ ホモ ストーカー https://twitter.com/sijenon k1@sijenon
https://twitter.com/5chan_nel (5ch newer account)
583Mad Chemist
垢版 |
2020/02/18(火) 19:03:42.48ID:UgSaFpKE
罵倒の書き込みする方は多いが、参考になる書き込みする方は少ない。

これ以上書き込んでも、クレクレ君と書き込まれるだけだが。
584132人目の素数さん
垢版 |
2020/02/18(火) 20:20:13.54ID:Ru3jYATE
上の方に
東京大学出版会  梅村浩著  「楕円関数論」
フェリックス・クライン著 正20面体と5次方程式 改訂新版 (シュプリンガー数学クラシックス)
Mumford Tata Lectures II Umemura

と代表的な文献3つ出てるのにわからんわからんと言うクレクレ未満のアホ
2020/02/19(水) 00:56:13.45ID:x/3aWG3b
「罵倒すれば答えをくれる、それが数学板だ」とクレクレに学習させちゃうアホ
586132人目の素数さん
垢版 |
2020/02/19(水) 01:09:32.48ID:xcI9RBze
問うのは簡単で答えるのは難しい問題の好例だものね
大丈夫、相手が答えられないと見るや罵倒してきた実代数的くんほど酷くはないよ(苦笑)

そういえばpixivに答えらしきものがあったんじゃ
2020/04/11(土) 02:05:46.48ID:jVXfLHUH
4次方程式
 x^4 +2ax^3 +bx^2 +a(b-aa)x + c = 0
を次の手順で解け。
(1) (x +a/2)^2 = y とおいて左辺をyで表わせ。
(2) yについて解け。
(3) xをyによって表わせ。
2020/04/11(土) 09:18:45.48ID:QxjOJ3hV
>5次方程式はご存知の通り解の公式がございませんね。

あれ?そうだっけ?そんな話知らない。
2020/04/11(土) 10:21:40.25ID:E9jY7q7+
>>24>>568を参照
2020/04/11(土) 10:22:51.19ID:E9jY7q7+
>>460>>550も参照になる
2020/04/12(日) 03:55:01.59ID:g/DVEXjN
4次方程式の解の公式なら >>587 かな?
2020/04/12(日) 07:04:06.48ID:J5mKuUVX
はいよ。こちらは双方とも楕円函数の利用。

5次方程式の解の公式を求める - ねくノート
http://neqmath.blogspot.com/2018/08/5.html
[PDF] エルミートのモジュラー方程式 1.1858年以前 - 津田塾大学
https://www2.tsuda.ac.jp/suukeiken/math/suugakushi/sympo03/03kasahara.pdf
2020/04/13(月) 03:58:02.47ID:PNtjkUIN
>>587 を参照して
 x^4 + x^3 - 2x + 1 > 0
を示せ。

[高校数学の質問スレPart404.051~070]
2020/04/16(木) 00:47:20.11ID:Fekx2b8P
はいよ。こちらは ↓ の利用。
 (1/4)x^4 + x^3 - 2x + 1 = (xx/2 + x - 1)^2
2020/05/17(日) 10:01:04.16ID:jv4DNZp5
x^5 -x^4 +4x^3 -3x^2 +4x -3 = 0 の正根は

x = 0.7626918603256712159

[面白スレ32問目.278]
2020/05/17(日) 22:41:52.47ID:jv4DNZp5
x^5 -x^4 +4*x^3 -3*x^2 +4*x -3
= (x - 0.7626918603256712159)
* (x*x -0.6100038387443596*x +2.4229341986697917)
* (x*x +0.37269569907003080*x +1.6234186219278017)

実根  0.7626918603256712159

複素根 0.3050019193721798 ± 1.5264036254703662*i
    -0.1863478495350154 ± 1.2604336955593805*i
2020/11/09(月) 00:13:38.92ID:J+3znwnZ
>>544
 Bring-Jerrared の標準形
  z^5 + z + a = 0,
 チルンハウス変換によってこの形に変形できるらしい。

数セミ増刊「数学100の定理」日本評論社 (1983)
 p.70 囲い記事
598Mad Chemist
垢版 |
2021/02/20(土) 21:52:35.17ID:OjKxVxxB
>>595
>>596

どうやって解かれたのでしょうか。
599132人目の素数さん
垢版 |
2021/02/21(日) 05:14:05.77ID:bisAjwLZ
横だがこんなサイトがある
https://keisan.casio.jp/exec/user/1388468056
600132人目の素数さん
垢版 |
2021/02/21(日) 07:59:04.23ID:mjvHpeEO
>5次方程式はご存知の通り解の公式がございませんね。

四則演算とベキ根による解の公式がない、というだけで
ベキ根以外の手段を認めれば解の公式はあるよ
601complete idiot ◆OHIXyLapqc
垢版 |
2021/02/21(日) 08:02:11.02ID:mjvHpeEO
>しかしそれは我々が知ってる
>実数の数体系(有理数と有理数の冪根の加減乗除で表される数)
>で表現できないというだけで、

有理数と有理数の冪根の加減乗除で表される数=実数とは違うよ

まず「有理数の冪根だが実数でない数」がある
例:√ー1

そして「実数だが有理数の冪根で表せない数」がある
例:e、π
602complete idiot ◆OHIXyLapqc
垢版 |
2021/02/21(日) 08:04:44.41ID:mjvHpeEO
>実数の表現を拡張して、5次方程式の解の公式を一般化する為の
>実数の新しい表現を与えてやれば表現できるはず。

実数じゃなく複素数なら、任意の自然数nについて
n次方程式の解が(重複を込めて)n個必ず存在するよ
それがガウスの「代数学の基本定理」ね

だから「新しい表現」は必要ない
単にベキ根だけでは解けないというだけ
603complete idiot ◆OHIXyLapqc
垢版 |
2021/02/21(日) 08:08:12.65ID:mjvHpeEO
偏角の原理をつかえば、ある範囲内に、
多項式f(z)の零点の数がどれだけあるかわかる
https://ja.wikipedia.org/wiki/%E5%81%8F%E8%A7%92%E3%81%AE%E5%8E%9F%E7%90%86
だから範囲を狭めていけばいくらでも正確に零点の位置がわかる
別に解の公式なんていらない
604complete idiot ◆OHIXyLapqc
垢版 |
2021/02/21(日) 08:10:39.97ID:mjvHpeEO
もっとも数値解析では
偏角の原理を使った方法は用いてないみたいだ
めんどくさいんだろうか?
2021/02/21(日) 08:14:18.30ID:mjvHpeEO
テータ関数とかいう難しい関数を使うと
5次といわず任意の次数の代数方程式の
解の公式ができる
https://en.wikipedia.org/wiki/Thomae%27s_formula

でも実用的ではないのでお勧めしない
606132人目の素数さん
垢版 |
2021/02/21(日) 09:59:45.83ID:bisAjwLZ
>>605
さんざん既出
2021/02/21(日) 18:04:32.95ID:mjvHpeEO
>>606
FAQでまとめといたほうがいいかもね

Q.5次以上の代数方程式の解の公式をつくりたい
A.既にあります 
  Thomae's formula
 ただし実用的でないので数値解法をお勧めします
  DKA法、等
 ちなみにn次代数方程式は(重複を含めて)必ずn個の複素数解をもつ、と
 すでにガウスの「代数学の基本定理」で証明されているので、
 複素数を拡大する必要は全くありません
608132人目の素数さん
垢版 |
2021/02/21(日) 20:24:53.89ID:hiPMaQFV
>>607
自演恥ずかしい
2021/02/22(月) 06:15:00.85ID:wsx1jonA
数学板もID表記が始まった今にあってIDが同じレスに自演呼ばわりするのは蛇足
仮にID違う>>606-607も自演と指摘しているとしてもスレの盛り上がりの流れから鑑みるに此の自演指摘は蛇足
610132人目の素数さん
垢版 |
2021/02/22(月) 06:46:52.65ID:+MFi2cAF
>>609
何が言いたいのかさっぱりわからん
2021/02/22(月) 08:40:13.71ID:MJyyMEOC
>>609
>>608は悔しかったんでしょう 何が、かは知りませんが
612132人目の素数さん
垢版 |
2021/02/24(水) 04:09:26.65ID:MO5QRC+b
その手の指摘は100までにだいたい出て
あとは5次方程式に関係する駄弁りに転じてるのは
読んだらわかるでしょ
2021/02/24(水) 06:09:01.20ID:eavifJXy
つまり、もうスレッドは終わってる、と
614132人目の素数さん
垢版 |
2021/02/25(木) 06:09:24.16ID:lIZttZG/
知り尽くされた話題だけど
それは専門家(見習い)のコミュニティの話
一般人との関心の折り合いをどう付けていくかが課題
2021/02/25(木) 10:05:36.10ID:zznxMDx9
テータ関数や超幾何関数で解の公式が書けるというのは数学科3年以上じゃないとわからない
「解はあるが根号だけでは解が表示できない」という言葉の意味がわからない
ガロア群が可解じゃないと・・・では通じない

「解を表現できる数体系」とか言い始める>>1みたいなアホには説明のしようがない
616615
垢版 |
2021/02/25(木) 10:16:44.16ID:zznxMDx9
アーベルの証明に近いものは高木貞治「代数学講義」7章にまとめられている
優秀な高校生なら理解可能であろうがwikiやネットで読んだ程度の雑多な知識面はともかく
理解力などの意味で「優秀な高校生」レベルでない人が多いw

>>329
3次方程式の解が全て実数の時でも虚数を含まない形で根号だけで
解を表示することができないことの証明も同じく7章に書いてある

などと書いても多分>>614でいう一般人には刺さらないだろう
そういう応対は私みたいなカスじゃなくブルーバックス書くような先生にお任せします
617132人目の素数さん
垢版 |
2021/02/25(木) 18:15:59.84ID:Usy0jZaK
>>616
カスなら死ね
2021/02/25(木) 19:50:00.38ID:l/M/iSHN
>>615
>「解はあるが根号だけでは解が表示できない」
>という言葉の意味がわからない

そもそも
「解があれば根号で解が表示できる筈」
という主張の根拠がわからんが
2021/02/25(木) 19:51:26.12ID:l/M/iSHN
どうせ一般人は解が数として求まればいいんだから
根号に固執する必要ないだろう
なんで数値解析を嫌うのかわからん

精神異常なのか?
620132人目の素数さん
垢版 |
2021/05/05(水) 04:16:59.46ID:QrlQ0YkL
雪江の青い本を参考に
4次方程式の解を根号で表したときの複雑さをガロア群の大きさで分類した

有理数係数の4次式 f(x) の有理数体上のガロア群を G とし
n = #G とする。

f(x) = 0 の解は...
n = 1 : 解は有理数。
n = 2 : 解は有理数か、平方根1個で表せる。
n = 3, 6 : 解の1つが有理数。他の3つは3次方程式の解の公式で解くので立方根の中に平方根が入る程度。
n = 4, 8 : 解は高々2重の平方根で表せる。
n = 12, 24 : 解は平方根の中に3次方程式の解の公式が入る式を3つ足したもの。唯一書く気が失せるレベル。
2021/05/12(水) 18:47:16.93ID:acG7Pir8
>>544
英語のウルトラよりも
こっちの異って名付け方が好みだ
622Mad Chemist
垢版 |
2022/02/24(木) 20:03:36.80ID:TpPTsnGd
こんな本が出てた。
早川書房 マリオ・リビオ著 「なぜこの方程式は解けないか?」
5次方程式が解けないことから群論まであれこれ書いてある。
623132人目の素数さん
垢版 |
2022/05/21(土) 22:29:15.54ID:jy7WmlE0
解いてみたという書き込みが無い。
2022/05/22(日) 00:59:11.99ID:CAehBHuJ
ようは加、減、乗、除、冪乗、冪根の他に新たな演算を用いれば一般の代数方程式の解の公式を表せるんじゃないかってことでしょ?
2022/05/22(日) 22:51:56.09ID:YB0b7+yR
>>624
その時点で「代数的」じゃなくなってるんだわ
626132人目の素数さん
垢版 |
2022/06/06(月) 18:09:37.31ID:WCtTDKcQ
拍子抜けするような簡単な方法で、五次方程式の代数的解法が出来そうなんですが
もし出来たら凄いことなのでしょうか?特許とか取れるでしょうか?
誰か教えてもらえませんか。
627132人目の素数さん
垢版 |
2022/06/06(月) 18:40:20.76ID:djra2yDV
周囲の数学が解る人に見てもらった?
628132人目の素数さん
垢版 |
2022/06/06(月) 19:36:13.28ID:WCtTDKcQ
>>627
周りにそういう人は居ません。
自分としては非常に手応えを感じており、もしも上手くいった場合に
折角なら金銭的なメリットを得られないものかと、尋ねてみました。
629132人目の素数さん
垢版 |
2022/06/06(月) 20:31:32.43ID:LcK9vskf
時間の無駄。あなたがいくら「できた」と言ってみたところで、学術的には門前払い。

たまたま代数的に解ける特殊な5次方程式は存在するが、
一般の5次方程式に一般的に通用する代数的解法は存在しないことが証明済み。
このことに反する主張は、学術的には門前払い。

必然的に、あなたのやり方はどこかが間違っていることになるが、
どこが間違っているのかを指摘する義務すらなく、ひたすらに門前払いを食らう。
だって、代数的解法は存在しないことが証明済みだから。

学術的にはこういう塩対応になる。
630132人目の素数さん
垢版 |
2022/06/06(月) 20:33:16.85ID:LcK9vskf
ではどうすればいいか?

知らんがな。

親切な人なら、あなたのやり方のどこが間違っているのか
具体的に指摘してくれるかもしれんが、特許がどうこうとか色気を出してる時点で、
できるだけ秘匿にしておきたいという魂胆が丸見えなので、自分で自分の首を絞めている。

あと、このような古い話題では、「代数的解法がない」という内容が正しいことに
もはや疑いようがないので、そのような結果に反する主張が
特許として受理されることはないと思われる(特許庁の信頼に関わるので)。
631132人目の素数さん
垢版 |
2022/06/06(月) 22:33:06.24ID:WCtTDKcQ
>>630
確かにどうも勘違いしていたようです。
ご指摘ありがとうございました。
632132人目の素数さん
垢版 |
2022/06/09(木) 03:37:50.64ID:tFfS/N1Q
どうしても三等分家と同じ空気をまとうよな。
両方ガロア理論が使えるだけあって。
2022/06/14(火) 00:44:51.60ID:aoIaY7ce
5次方程式に一般的な代数的解法が存在しない事はガロアの結果とは別に示されてたけど
ガロアいなかったら代数学のそこそこマニアックな結果になってたのかな…
634132人目の素数さん
垢版 |
2022/08/28(日) 16:51:46.06ID:jv05r6bX
体K上の5次方程式がK上既約である場合、
そのガロア群としては、最も一般の場合の位数5!=120次の対称群S_5と
それの正規部分群である位数60の5次の交代群A_5、
があるがそれらはいずれも可解ではない場合になる。
解ける場合のガロア群は、位数が5x4=20次の場合と、
位数が5x2=10次の場合と、位数が5次の場合巡回群C_5のものだけである。
それらに対しては、ラグランジュの分解式を使って、K上で解の代数的表示
(べき根と四則だけの組あわせで)を書くことができる。
体K上での多項式のガロア群は何になるかは、代数的に決定する方法があるが、
長くなるのでここでは述べない。それにはK上での多項式の因数分解を用いる。
635132人目の素数さん
垢版 |
2022/08/30(火) 16:30:13.80ID:UQ0phbRg
体Kが有限体の場合には、5次方程式のすべての解を代数的に?求める
ことが出来る。それは丹念に有限体の元を1つずつ入れてみて根であるものを
拾い上げれば良いのである。でもそれを、四則演算とべき根の操作による
式として表したことにならないとすれば、拾い上げでは代数的解法とは
呼べないであろう。一般の係数についての解を与えたことにならないから。
はたして、有限体の場合には拾い上げではない代数的解法はないのだろうか?
なお、べき根を使うとなると、それにより有限体が拡大される場合もおこる。
2022/08/30(火) 16:40:50.69ID:SYAq3eKT
有限体の台数拡大は順海であったなー
637132人目の素数さん
垢版 |
2022/08/30(火) 19:45:55.33ID:UQ0phbRg
大きな有限体、たとえばpがとても大きな素数たとえば千桁で、体がK=Z_pのとき、


二次方程式 x^2 = b がK=Z_pの中に解を持つかどうかを判定し、解があればそれを
具体的に導くにはどうすれば良いか。

さらに、三次方程式 x^3=c がKの中に解を持つかどうかを判定し,
解があればそれを具体的に導くにはどうすれば良いか。

5次方程式x^5=dが。。。
638132人目の素数さん
垢版 |
2022/08/31(水) 00:37:55.49ID:JeikDXCN
平方剰余って知ってる?
639132人目の素数さん
垢版 |
2022/08/31(水) 01:17:45.10ID:UteMuGfC
平方剰余だけだと体の中に平方根があるかどうかしかわからん。
平方根自体を千桁の数としてZ_pの中から求めなければならないのだが。
どうやるのが最も合理的かな。
640132人目の素数さん
垢版 |
2022/08/31(水) 01:20:41.24ID:JeikDXCN
>>639
「判定し、」と書いてるから平方剰余を知らないと思った
641132人目の素数さん
垢版 |
2022/08/31(水) 21:23:26.16ID:UteMuGfC
じゃあ、立方剰余、四乗剰余は知っている?
642132人目の素数さん
垢版 |
2022/09/01(木) 08:39:25.65ID:uB81n779
ヴェイユのゼータ関数について調べることを勧める
643132人目の素数さん
垢版 |
2022/09/01(木) 09:21:16.17ID:ZC07wOqW
まず平方剰余の相互法則から
644132人目の素数さん
垢版 |
2022/09/01(木) 19:56:14.03ID:TXS31IJE
K が F_2 を含む体であるとき
K 上の2次方程式の解が四則と冪根で表せない場合があるよ(>>49)
面倒だね

根を文字でおいて無理矢理拡大できるから
もう今の学者は冪根で解くことに執着していないのだろう
645132人目の素数さん
垢版 |
2022/09/03(土) 09:44:21.14ID:1mdmiBYJ
平方根だから(有限)体の中に根があるならば
ニュートン法を使えば反復で収束するのだろうか?
646132人目の素数さん
垢版 |
2022/09/03(土) 10:25:15.67ID:Ja0wNjCx
>>645
>>ニュートン法を使えば反復で収束するのだろうか?
どんな距離に関して?
647132人目の素数さん
垢版 |
2022/09/23(金) 17:05:42.74ID:Fm65WMwd
部分体を持たない素体のなかの「距離」としては、自明なものしかないだろ。
つまり一致するかしないかだけ。
たとえば平方根を求めるためのニュートン法は有理式の反復の形にかけるから、
体上では実行可能だろう。それがどのような挙動を示すだろうか。
たとえば、比較的体の要素数が大きくても、初期値のある程度の割りあいに
対して少数回の反復でもって、平方根に到達するということがあったりすれば
(願望だが)、良いのになという話。たぶんそうならないかもしれないが、
それはそれで面白い。
648132人目の素数さん
垢版 |
2022/09/28(水) 21:05:55.95ID:z1nf2YJs
いくつかの例で多少実験してみたところ、
どうもニュートン反復式は、素体の中で平方根を
求める役には全然たちそうもないことがわかった。
649132人目の素数さん
垢版 |
2022/10/23(日) 16:56:19.73ID:RxDfxLkf
Z/pZ 上のm次多項式f(x)を既約分解すれば、

1次因子があれば、それがf(x)=0のZ/pZに於ける解になる。
2次の既約因子があればZ/pZ上の2次拡大体の中に2次既約因子の個数の2倍の解がある。
3次の既約因子があればZ/pZ上の3次各大体の中に3次既約因子の個数の3倍の解が、
。。。
既約分解を行う算法は既に存在していて、数式処理などでは使われている。
650132人目の素数さん
垢版 |
2022/10/30(日) 16:21:07.12ID:YxSemZpb
要素の数が有限の体は、標数が素数pであって、
要素数が素数pからなる要素数がpの体であるか
またはそれの任意次数の代数拡大で得られる体に同型である。
拡大次数をmとすればその要素数はpのm巾になる。

つまり、要素数が有限である体は極めて限られた存在で
豊富さに欠ける。
651132人目の素数さん
垢版 |
2022/10/30(日) 19:18:04.57ID:/BpMF6dC
素数は豊富さに欠けるということになるから、間違った主張である
652132人目の素数さん
垢版 |
2022/11/08(火) 06:25:23.93ID:Mb93uGhw
>>644
Abel方程式にはまだ執着しているようだ
653132人目の素数さん
垢版 |
2022/12/20(火) 15:57:23.41ID:R0GrT6qP
https://i.imgur.com/9OQ7o5g.jpg
https://i.imgur.com/auL6Smd.jpg
https://i.imgur.com/oCm47qO.jpg
https://i.imgur.com/kRu3kH0.jpg
https://i.imgur.com/4TKqdHP.jpg
https://i.imgur.com/VhvLhak.jpg
https://i.imgur.com/kfHpj76.jpg
https://i.imgur.com/YT0E4rZ.jpg
https://i.imgur.com/qjExLts.jpg
https://i.imgur.com/GUSPRLW.jpg
https://i.imgur.com/qurLBfF.jpg
https://i.imgur.com/0u2Zc4o.jpg
2023/09/05(火) 17:07:05.97ID:IYjZaTLp
類等式
2023/09/05(火) 17:10:16.77ID:IYjZaTLp
K=a⁻¹Ha、Hᵃ
2023/09/05(火) 17:10:45.25ID:IYjZaTLp
KはHをaで変換したもの
2023/09/05(火) 17:25:09.67ID:IYjZaTLp
自己共役部分群
2023/09/05(火) 17:27:09.30ID:IYjZaTLp
不変部分群⇔正規部分群
2023/09/05(火) 17:28:22.75ID:IYjZaTLp
H=a⁻¹Ha⇔aH=ℍa
2023/09/05(火) 19:03:21.20ID:urKvRmK5
G/K=Ka
2023/09/05(火) 19:03:36.74ID:urKvRmK5
Kは正規部分群
2023/09/05(火) 19:04:50.00ID:urKvRmK5
Kに関する剰余群
2023/09/05(火) 19:06:10.27ID:urKvRmK5
これほKが正規部分群でなければ成立しない
2023/09/05(火) 19:07:28.13ID:urKvRmK5
|G/K|=|G|/|K|=|G: K|
2023/09/05(火) 19:08:39.42ID:urKvRmK5
準同型写像
2023/09/05(火) 19:09:19.13ID:urKvRmK5
φ(ab)=φ(a)φ(b)
2023/09/05(火) 19:10:26.26ID:urKvRmK5
準同型写像が全単射ならば
同型写像となる
2023/09/05(火) 19:13:47.72ID:urKvRmK5
G≅G'
2023/09/05(火) 19:21:13.08ID:urKvRmK5
G/Kerf≅Imf
2023/09/05(火) 19:21:25.20ID:urKvRmK5
群準同型定理
2023/09/05(火) 19:22:52.07ID:urKvRmK5
G/Kerf=G/G⇒G/G≅e
2023/09/05(火) 19:24:03.71ID:urKvRmK5
G/Kerf=G/e≅G
2023/09/05(火) 19:32:45.60ID:urKvRmK5
正規部分群の縮小列を
2023/09/05(火) 19:33:09.84ID:urKvRmK5
正規鎖、、長さ
2023/09/05(火) 19:34:14.42ID:urKvRmK5
格部分群がGの正規部分群である必要は無い
2023/09/05(火) 19:35:08.98ID:urKvRmK5
剰余群列
G/G'
2023/09/05(火) 19:36:43.40ID:urKvRmK5
極大正規部分群の列
2023/09/05(火) 19:37:27.94ID:urKvRmK5
組成列
2023/09/05(火) 19:37:41.22ID:urKvRmK5
単純群
2023/09/05(火) 19:42:06.39ID:urKvRmK5
Jordanヘルダーの定理
2023/09/05(火) 19:42:36.94ID:urKvRmK5
組成列の、長さは等しい
2023/09/05(火) 19:43:38.14ID:urKvRmK5
剰余群列の間に同型写像が存在する
2023/09/05(火) 19:44:49.35ID:urKvRmK5
全て可換群⇒可解列
2023/09/05(火) 19:45:25.76ID:urKvRmK5
可解群
2023/09/05(火) 19:46:21.38ID:urKvRmK5
位数最小の非可解群
2023/09/05(火) 19:46:44.51ID:urKvRmK5
A₅ 交代群
2023/09/05(火) 19:47:30.54ID:urKvRmK5
Galoisの定理
2023/09/05(火) 20:07:57.89ID:urKvRmK5
直積G=ΠH
2023/09/05(火) 20:09:05.02ID:urKvRmK5
一意的に積に分解される
2023/09/05(火) 20:12:34.03ID:urKvRmK5
直可約
2023/09/05(火) 20:12:49.87ID:urKvRmK5
直既約
2023/09/05(火) 20:13:42.88ID:urKvRmK5
直既約分解
2023/09/05(火) 20:14:02.38ID:urKvRmK5
Remak分解
2023/09/05(火) 20:15:03.97ID:urKvRmK5
完全可約
2023/09/05(火) 20:48:57.47ID:urKvRmK5
環と体は2つの二項演算
和と積
⊗と⊕
2023/09/05(火) 20:50:46.95ID:urKvRmK5
加法に関して群、
2023/09/05(火) 20:51:13.74ID:urKvRmK5
乗法に関して半群
2023/09/05(火) 20:52:59.26ID:urKvRmK5
商は定義されない
2023/09/05(火) 20:53:13.31ID:urKvRmK5
それ以外はOK
2023/09/05(火) 20:54:46.66ID:urKvRmK5
分配律が成り立つ
2023/09/05(火) 20:56:03.41ID:urKvRmK5
a(b+c)、(a+b)c
2023/09/05(火) 20:56:47.41ID:urKvRmK5
0は0とは限らない
2023/09/05(火) 20:59:24.17ID:urKvRmK5
単位的環
2023/09/05(火) 20:59:35.56ID:urKvRmK5
可換環
2023/09/05(火) 21:00:26.23ID:urKvRmK5
簡約律が成り立つ
2023/09/05(火) 21:00:39.38ID:urKvRmK5
零因子を持たない
2023/09/05(火) 21:01:28.80ID:urKvRmK5
整域
2023/09/05(火) 21:03:00.27ID:urKvRmK5
有理整数環は整域
2023/09/05(火) 21:03:53.46ID:urKvRmK5
斜体
2023/09/05(火) 21:04:09.44ID:urKvRmK5
非可換体
2023/09/05(火) 21:04:41.54ID:urKvRmK5
全ての体は整域
712132人目の素数さん
垢版 |
2023/09/15(金) 01:28:39.64ID:5X8DnZeA
やっぱり、5次方程式は普通に係数比較をして、代数的に解けるんじゃないかと思えるんですよね。
4次以下の場合と、条件を同じにできると思うんですよね。
2023/09/15(金) 13:28:32.91ID:PNtPhSaL
ネットをちょっと読んだくらいで分かった気になるんじゃなく
一度くらいはこれをメインに扱ったちゃんとした教科書読んだ方がいいぞ
ラグランジュの考えたなぜ3次方程式や4次方程式は解けるのか?
ラグランジュの分解式みたいな話から読んだ方が多分いい

ガロア理論使うと5次以上の一般解がない証明はかなり短いんだけど
具体的な計算とはかけ離れた証明で一般人置いてけぼりだからな
5次対称群には正規部分群の系列がないみたいな証明
2023/09/15(金) 22:49:14.92ID:jVzPsItt
「普通に係数比較をして、代数的に解けるん」
だったら誰かやってるはずだろ、という
考えに至らないとか
アーベルによる不可能性の証明があるにも関わらず
「それでも俺にはできそうな気がする」
という信念が何処から来るのかが気になる。
が、これはそれほど珍しいことではなく
「角の三等分家」という類型として知られており
世の中には一定数いるタイプ。
2023/09/15(金) 23:04:55.53ID:jVzPsItt
ガロア理論は以下のことを含んでいる。
・5次以上の一般代数方程式が代数的には解けないことの証明。

・一般的には解けなくても、個々の方程式は解ける場合もある
その違いはどこから来るか?という問題に対して
「方程式のガロア群」が定義されて、それが
可解群であるか非可解群であるかによって定まる
という解答を与える。

・ガロア群が可解群であり、その根への作用が
分かっている場合には、べき根解法に対して
透明な計算法を提供する。

というわけで、この天才の仕事によって
話はほぼ終わっている。
716132人目の素数さん
垢版 |
2023/09/16(土) 04:57:44.68ID:2TiB7IGN
係数比較で解いていくのは4次以下と同じで普通なのですが、最初に5つの解を表す方法が普通ではないのです(多分)。
それは5つよりも多くの置換パターンを表現しており、例えば、5種類の置換しか表現しないもの(5つの数の巡回置換とか)から
始めると重複ができて120通りの置換が網羅できないのですが、一手目のパターンが多ければ力業で網羅できる訳です。
5*4*3*2だと1つでも重複すればダメですが、20*4*3*2とかなら多少の重複があっても120通りをすべて表現
できるという感じです。
717132人目の素数さん
垢版 |
2023/09/17(日) 16:58:38.48ID:RJ313TSr
「正規部分群の系列がない」と駄目なのでしょうか?
正規部分群でなくとも、部分群を束ねて、「そのどれかが条件を満たせばいい」とはならないのでしょうか?
私は、ガロア理論も群の概念も分かっていないので全部直感なのですが、抜け道があるとすれば、その辺りなのではないかと
思うんですよね。
2023/09/17(日) 17:16:23.30ID:Y6zB0giw
牙狼和より自分の直感を信じるすごいやつ!
719132人目の素数さん
垢版 |
2023/09/25(月) 12:36:50.29ID:uIkK4+1W
5つの解を表しながら、6つ以上の置換パターンを表現する方法は、数学界的には周知の事なのでしょうか?
720Mad Chemist
垢版 |
2023/10/13(金) 16:22:56.18ID:mpCVv2hH
エクセルを使ってだが、5次方程式を解く方法を思いついた。
係数がややこしいと難しいが、簡単なものは解けるようになった。
実数解だけだが。
721Mad Chemist
垢版 |
2023/10/13(金) 16:23:04.00ID:mpCVv2hH
エクセルを使ってだが、5次方程式を解く方法を思いついた。
係数がややこしいと難しいが、簡単なものは解けるようになった。
実数解だけだが。
2023/10/13(金) 17:29:23.56ID:PbJWAbhV
>エクセルを使ってだが、5次方程式を解く方法を思いついた。

「代数的解法」とは言ってませんね。
723Mad Chemist
垢版 |
2023/10/21(土) 13:53:38.22ID:jwxNIkGs
私がやったのはエクセルで数表作って実数解を見つけるという手法だ。

実数解が1個、又は2個見つかったら以下のように因数分解できる。

与式 = (x-α)(ax^4 + bx^3 + cx^2 + dx + e) = 0

与式 = (x - α)(x - β)(ax^3 + bx^2 + cx + d) = 0

3次方程式と4次方程式はすでに解けるようになっているので、5次方程式は
解けるようになったという次第だ。
ベースが数表だから、今のところ -15 < x < 15 の範囲で
最初の実数解を探すようにした。

3次方程式や4次方程式を解けた際は少なからず誇ろばしく
思ったものだが、5次方程式の解法は能が無いというかイマイチ
恥ずかしい。
724132人目の素数さん
垢版 |
2023/10/21(土) 20:56:09.81ID:cJ4T8lE4
級数表現すればええやろ
725132人目の素数さん
垢版 |
2023/10/25(水) 19:26:51.43ID:QflJFoJT
>>724
やってみたんか?
726Mad Chemist
垢版 |
2023/10/29(日) 20:53:23.68ID:PLrLns6O
私が多次方程式に興味を持ったのは三相交流を勉強する機会が
あり、3次方程式に興味を持ったからである。
数年かかりであったが解けるようになった。

さらにさかのぼると学生のころベンゼン分子の分子軌道の計算
につまづいていた。ベンゼンは炭素数が6個だから6次方程式になる。
6次方程式を解くのがぼやーっとした目標だった。
さてセミリタイヤ中の爺の暇つぶしである。
6次方程式はどうしたものやら。
思考以前の妄想中である。
727132人目の素数さん
垢版 |
2023/10/30(月) 16:51:44.36ID:IoYezsQz
>>725
ニュートン法を書き下すだけやで
728132人目の素数さん
垢版 |
2023/11/01(水) 01:28:09.28ID:oBK6S5+s
実は、もし5次方程式に代数的解法があるとすれば、(状況証拠的に)これしかないだろうという表式を既に得ているんですよね。
まあ勘違いの可能性が高いですし、いざ方程式を解こうと試行錯誤するにも計算量的に大変だろうしと、それ以上は手つかずなんで
すけども。
いつか、解けないという証明を信じている人達の鼻を明かす事が出来たら面白いだろうなあと思って、解法への直観的理解が降りて
来るのを待っている状態なんですよね。
729132人目の素数さん
垢版 |
2023/11/01(水) 07:18:23.45ID:FRQ9rdQB
解けないという言葉の意味を正確に
2023/11/01(水) 08:10:02.19ID:F5/ta2Ve
>>728さんは典型的な「角の三等分家」でしょ。
あまりにも類型に当てはまっている。
「彼らのほとんどは年取った男である」とか
「定年間際にやっと自分の方法を見つけるのである」
とか。世の中にそんなひとが一定数いるのが不思議だが事実。
もちろん、絶対に「分からせよう」などと思ってはいけない。
数学者や編集者に送り付けてくる手紙への返事の仕方まで
マニュアル化されているくらい。
2023/11/01(水) 08:14:53.73ID:F5/ta2Ve
 『角の三等分』(矢野健太郎・一松信著、筑摩文庫)
の巻末に収録されている元数学セミナー編集長の亀井哲治郎氏
の文章が面白かった。数学雑誌の編集部では「角の三等分の
証明ができました」と読者が言ってきても「相手をするな」
というのが先輩からのきついお達しだった。ところが、
あるとき魔がさして1人の「三等分家」のお手紙に返事を
書いてしまう。それから、延々と証明とその問題点の指摘
のやりとりが何日も続き、相手のオジサンがあまりに
しつこいので、最後は、電話が来たときに怒鳴りつけて
しまったというお話。なんだか、可哀想なような、
後悔の念にさいなまれたというような懺悔っぽい文章だった。
2023/11/01(水) 08:28:40.75ID:F5/ta2Ve
文字通りの「角の三等分」問題とは限らず
「フェルマーの初等的証明」や「5次方程式の代数的解法」
という変種もある。フェルマーの方は数学者との
やり取りを公開した本まで出版されてたはず。
ただし、フェルマーの最終定理は「初等的証明はない」
という数学的証明があるわけではないのに対して
「5次の一般代数方程式」の方は「代数的解法の不可能」
の数学的証明があるのが、「初等幾何における角の三等分」
と同じ。
733132人目の素数さん
垢版 |
2023/11/01(水) 08:30:57.93ID:FRQ9rdQB
フェルマー予想や角の3等分の証明に
返事を書くのはゲッチンゲン大学の数学科の助手の職務だった。
証明が日本語で書いてあると
返事は「私は日本語が読めません」でよいので
楽だったという。
734132人目の素数さん
垢版 |
2023/11/03(金) 09:18:22.24ID:vAcDRVep
素人はだいたい「代数的解法」の意味が分かってない
ざっくりいうと「冪根を使った解法」という意味なので
冪根以外のものを使った場合なんて一切考えてない

ガウスは代数学の基本定理で
「任意の複素数係数n次方程式は重複まで含めて必ずn個の複素数解を持つ」
と証明した
そして代数的でない方法まで認めていいなら
n個の解を全て見つける解法が存在する
だから実用的には何も困らない
一般人に「5次以降の代数方程式を代数的に解く方法は存在しない」というのは
百害あって一利もない
735132人目の素数さん
垢版 |
2023/11/03(金) 10:11:26.67ID:wVID2LZd
しかし人によっては驚天動地であり
偉大な研究の出発点になりうる
2023/11/04(土) 15:26:59.03ID:v3fY12De
>>735
そんな奴はここには来ないよ
2023/11/04(土) 16:13:47.52ID:Hd+RkqEo
>>736
いい歳して厳密解と近似解の話の違いが理性的に理解できないようじゃ相当残念だがな。
738132人目の素数さん
垢版 |
2023/11/04(土) 17:02:00.30ID:v3fY12De
>>737 いくらでも正確に近似できるならそれは厳密解である
複素数の定義を正しく理解しているなら、わかる
しかし定義も知らん奴には理性のかけらもない
739132人目の素数さん
垢版 |
2023/11/05(日) 08:45:06.82ID:5LHa7EOg
>>736
一般人しか来ないか?
740132人目の素数さん
垢版 |
2023/11/06(月) 20:24:23.62ID:8OgSUMzg
応用で考えた場合、有限体のような連続性を仮定できない体の場合、とても意味のある話になる。
2023/11/06(月) 21:39:07.56ID:LweSmYac
有限体上の代数拡大のガロア群がどうなるかご存じ?
742132人目の素数さん
垢版 |
2023/11/07(火) 07:23:54.94ID:ivDADiXg
q 乗フロベニウス写像とよばれる自己同型写像 ・・・・・・


したがって、有限体の拡大はすべて巡回拡大であるガロア拡大である。
743132人目の素数さん
垢版 |
2023/11/08(水) 19:41:30.37ID:yLYMUQYI
5は4の次なのだろうか。
744132人目の素数さん
垢版 |
2023/11/14(火) 14:37:30.19ID:FeFo+jvG
ガロア理論を理解していない人間の妄想です。
5つの数の置換パターンは120通りですが、それを生成する過程において「どことどこを置換したのか」という情報まで含めて
区別すると、もっとパターン数が多くなります。もしかしたら、4次方程式までは偶々その区別が必要でなかったのが、5次では
必要になったので、それまでの考え方が通用しなくなっているだけという可能性はないでしょうか?
745132人目の素数さん
垢版 |
2023/11/14(火) 20:38:19.73ID:bzNWkm1A
馬鹿のポエム
746132人目の素数さん
垢版 |
2024/01/07(日) 10:49:30.42ID:VYq5qYoK
なんか三元数ができた。ちゃんと絶対値の積が積の絶対値になっている。
四元数よりも簡単に三次元の回転を表せたりしないだろうか。すごく自然なので、何かしらの価値がある気がする。
ネット情報だと、三元数を構成するのは無理だというような言説をよく見たので、数学者と言えども言外の思い込みが
色々あるのだろうなあと思った。
747132人目の素数さん
垢版 |
2024/01/07(日) 11:23:00.72ID:mSOjCzjK
割り算はできる?
積の可換性は?
748132人目の素数さん
垢版 |
2024/01/08(月) 00:42:32.63ID:TUGioFES
割り算はどうなんでしょう? 絶対値が成り立つ様なのでゼロ因子は存在しないと思うのですが、証明の仕方が分かりません。
積は、非可換で非結合的なので、必ず先頭から掛けていかねばなりません。
ちなみに、私の考えたものは三元数とは言えないかも知れないと思えてきました。
私は、x元数の呼称をどういう基準で決めているのかが分からなかったので、とりあえず、他の元の和で作れないものを独立した元と
見做すのだろうと考えていたのですが、なぜか”実数+虚数”が二元数と呼ばれている事を受け入れていたんですよね。
しかし、マイナスと虚数単位はどちらも独立していますが、一方は単なる符号で、もう一方は元扱いなんですよね。
本来なら、一元数は+、二元数は+とー、三元数は+とωとω²、四元数は+とーとiと-i、となるべきではないでしょうか。
マイナスが符号なら、複素数平面上の角度はどれも符号という解釈もありだと思うんですよね。
という訳で、私の考えた演算規則に意味が無かったとは全く思っていませんが、三元数であるかどうかは恣意的で重要ではないのかも
しれないと思いました。
749132人目の素数さん
垢版 |
2024/01/08(月) 08:48:28.63ID:ZrVhSI9L
珠洲市の今井塾はどうなった?
2024/01/08(月) 09:13:34.17ID:ZrVhSI9L
>本来なら、一元数は+、二元数は+とー、三元数は+とωとω²、四元数は+とーとiと-i、となるべきではないでしょうか。

線形独立って知ってますかね?
1+(-1)=0
1+ω+ω^2=0
i+(-i)=0
だから、線形独立ではない。
だからたとえば、a,b,cを正の実数として「a+bω+cω^2の全体が3元数だ!」
と言ったとしても、実際には2元数にしかならない。
751132人目の素数さん
垢版 |
2024/01/08(月) 10:20:43.67ID:qy/VQOGp
既存の体論の拡大次数すら知らないクチか

自分の思い付きを「本来なら」なんて言ってのけるのも迷惑
752132人目の素数さん
垢版 |
2024/01/08(月) 17:58:14.75ID:0Lxe35f+
今すぐに精神科を受診し、治療を受けてください。他に方法はありません。
753132人目の素数さん
垢版 |
2024/01/11(木) 19:39:32.31ID:n9y/DIYW
ついでに
a, b, c を有理数としたときの a+bω+cω^2 であれば
その全体は円分体 Q(ζ_3) というこれまた既存のものになる。
a+bω+cω^2=(a-c)+(b-c)ω なのでQの2次拡大にすぎない。

Q(ζ_5) はQの4次拡大だがこれを4元数だと思ってもいけない。

R(ζ_5)=R(ζ_3)=R(i)=C とも別の話。
754132人目の素数さん
垢版 |
2024/01/12(金) 22:07:53.97ID:6VWTpLuo
「だからたとえば、a,b,cを正の実数として「a+bω+cω^2の全体が3元数だ!」と言ったとしても実際には2元数にしかならない。」
とか、
「R(ζ_5)=R(ζ_3)=R(i)=C」
とか、
この考え方は果たして当たり前なのでしょうか。
もしかすると、どれも実軸と虚軸との直交座標で考えられるという事なのかもしれませんが、それだと、行列計算との整合性は
取れるのでしょうか。
755132人目の素数さん
垢版 |
2024/01/13(土) 12:31:50.30ID:hW5Se/sj
今井塾のひとがニュースの安否不明者の中に入っていた...
2024/01/13(土) 19:55:48.07ID:8D94gvou
>>755
マジっすか?
757132人目の素数さん
垢版 |
2024/01/14(日) 01:12:23.12ID:suIpC6xv
a, b∈R が動くとき
a+bi がとる値全体は C だし a+bω がとる値全体も C
添加元の選び方が違うだけで新しい数は作れてないでしょ
R(ω)=R(i) が意味するのはこれに近い
a+b(5+7i) みたいなのでもいいの

基底はガウス平面で直交しないが斜交座標での計算は行列の守備範囲内だろう


それとも
ωを複素数にない独自のものの記号として使っているの?
だとしたら複素数解を得られる保証はない
2024/01/14(日) 09:59:44.03ID:WT7Agqld
実計量線型空間の
2024/01/14(日) 10:01:38.93ID:WT7Agqld
対称変換
2024/01/14(日) 10:04:02.00ID:WT7Agqld
随伴変換T*
2024/01/14(日) 10:05:13.59ID:WT7Agqld
Tx y=x T*y
2024/01/14(日) 10:06:12.85ID:WT7Agqld
Tx y=x T*y
2024/01/14(日) 10:06:35.27ID:WT7Agqld
T=T*
2024/01/14(日) 10:07:00.65ID:WT7Agqld
対称変換
2024/01/14(日) 10:07:27.23ID:WT7Agqld
TT*=I
2024/01/14(日) 10:07:57.82ID:WT7Agqld
直交変換
2024/01/14(日) 10:09:17.88ID:WT7Agqld
直交変換
2024/01/14(日) 10:09:41.91ID:WT7Agqld
対称行列
2024/01/14(日) 10:10:04.22ID:WT7Agqld
直交行列
2024/01/14(日) 10:11:12.40ID:WT7Agqld
対称変換の固有値
2024/01/14(日) 10:11:40.87ID:WT7Agqld
全て実数
2024/01/14(日) 10:12:19.78ID:WT7Agqld
直交変換の固有値
2024/01/14(日) 10:13:07.87ID:WT7Agqld
全て||=1の複素数
2024/01/14(日) 10:15:45.54ID:WT7Agqld
対称行列は
2024/01/14(日) 10:16:18.79ID:WT7Agqld
適当な直交行列により
2024/01/14(日) 10:16:42.05ID:WT7Agqld
対角化出来る
2024/01/14(日) 10:17:31.47ID:WT7Agqld
U-1AU=対角行列
2024/01/14(日) 10:22:11.57ID:WT7Agqld
正値、半正値対称変換
2024/01/14(日) 10:33:25.45ID:WT7Agqld
k次主座小行列
780132人目の素数さん
垢版 |
2024/01/14(日) 13:29:45.78ID:EB1NoV8S
今井って現在83歳だったんだな。
最新の安否不明者のリストには載ってないから
安否確認されたんだろうな。
2024/01/14(日) 13:33:09.49ID:EB1NoV8S
なぜこのスレで今井の話か?というと
角の三等分家とマチガッテル系というか
このスレの三等分家さんとも心理的な共通項
があると感じるから。今井というひとは
現代数学が初歩の部分でマチガッテルまたは
不十分であるという主張だったから。
2024/01/14(日) 13:36:50.52ID:EB1NoV8S
複素数を複ベクトルと言い変えて、車輪の再発見
みたいなことやってたのも、このスレのひとと
共通点がある。このスレの三等分家さんは理解が
まだまだ不十分だが、理解が深まって「完成」に
近づけば、結局「車輪の再発見」のようになるはず。
2024/01/14(日) 16:29:59.30ID:WT7Agqld
f(x)=xAx
2024/01/14(日) 16:32:03.16ID:WT7Agqld
直交標準形
2024/01/14(日) 17:16:48.15ID:WT7Agqld
部分集合
2024/01/14(日) 17:20:39.62ID:WT7Agqld
真部分集合
2024/01/14(日) 17:24:53.17ID:WT7Agqld
⊂、⊊、⊃、⊋
2024/01/14(日) 17:26:06.74ID:WT7Agqld
空集合∅
2024/01/14(日) 17:26:31.30ID:WT7Agqld
合併集合∪
2024/01/14(日) 17:27:01.48ID:WT7Agqld
共通部分∩
2024/01/14(日) 17:28:50.90ID:WT7Agqld
共通部分∩
2024/01/14(日) 17:29:20.21ID:WT7Agqld
A上の同値関係
2024/01/14(日) 17:30:25.16ID:WT7Agqld
任意のx~x
2024/01/14(日) 17:31:06.05ID:WT7Agqld
x~y⇒y~x
2024/01/14(日) 17:31:52.92ID:WT7Agqld
x~y⇒y~x
2024/01/14(日) 17:32:58.70ID:WT7Agqld
x~y∧Y~z⇒x~z
2024/01/14(日) 17:34:36.57ID:WT7Agqld
x~y∧Y~z⇒x~z
2024/01/14(日) 17:35:18.65ID:WT7Agqld
同値関係~による同値類
2024/01/14(日) 17:38:10.49ID:WT7Agqld
商集合
2024/01/14(日) 17:40:23.92ID:WT7Agqld
逆像、全逆像
2024/01/14(日) 17:41:31.74ID:WT7Agqld
逆像、全逆像
2024/01/14(日) 17:42:13.87ID:WT7Agqld
1対1写像、単射
2024/01/14(日) 17:42:57.31ID:WT7Agqld
1対1写像、単射
2024/01/14(日) 17:44:45.22ID:WT7Agqld
上への写像、上射、全射
2024/01/14(日) 17:46:06.75ID:WT7Agqld
全単射、双射
2024/01/14(日) 17:49:47.80ID:WT7Agqld
合成写像、積S○T
2024/01/14(日) 17:50:10.27ID:WT7Agqld
恒等変換I
2024/01/14(日) 17:53:10.87ID:WT7Agqld
恒等変換I
2024/01/14(日) 17:55:04.01ID:WT7Agqld
逆写像f-1
fg=1、gf=1、全単射のときのみ
2024/01/14(日) 18:40:54.14ID:WT7Agqld
加法が定義され、結合律が成り立ち、単位元を持ち、逆元が存在し、可換律を満たす。加法群をなす。0、-x
2024/01/14(日) 18:45:38.48ID:WT7Agqld
分配法則
結合法則(ab)x=a(bx)
1x=x
スカラー乗法
2024/01/14(日) 21:08:55.46ID:WT7Agqld
W≠∅
2024/01/14(日) 21:10:15.80ID:WT7Agqld
x+y∈W
2024/01/14(日) 21:10:43.56ID:WT7Agqld
ax∈W
2024/01/14(日) 21:22:39.92ID:WT7Agqld
同型写像
2024/01/14(日) 21:23:02.60ID:WT7Agqld
1対1かつ上への写像
2024/01/14(日) 21:23:20.43ID:WT7Agqld
全単射
2024/01/14(日) 21:24:54.41ID:WT7Agqld
反射律
2024/01/14(日) 21:25:27.53ID:WT7Agqld
対称律
2024/01/14(日) 21:25:48.99ID:WT7Agqld
推移律
2024/01/14(日) 21:26:16.05ID:WT7Agqld
同値関係
2024/01/14(日) 21:28:37.97ID:WT7Agqld
φ(a×b)=φ(a)××φ(b)
φ(a+b)=φ(a)++φ(b)
準同型。同型
V≃V'
823132人目の素数さん
垢版 |
2024/02/25(日) 07:17:24.57ID:jEnDms7m
>>757

複素数解と言っても、得られる保証が有るのは数値解でしかないと思います。
だとすれば、幾何と代数の同一視が過ぎると思うんですよね。
824132人目の素数さん
垢版 |
2024/02/25(日) 07:53:49.58ID:ynLPkG4t
>>823 数値解でええやん 冪根とかいうても最後は数値にするなら同じやん
825132人目の素数さん
垢版 |
2024/02/25(日) 12:56:10.38ID:jEnDms7m
数値解しか求められないのであれば、それは「いくらでも真の値に近づける」ではなく、「その表記法では表すことができない」
という意味でしかないと認識すべきだと思います。
どうしても代数的に表せない場合は、仮に幾何的な直観で正しいように見えても、実は的外れであるという危険性が存在していると
思うんですよね。
2024/02/25(日) 13:35:15.53ID:IAHwyzFf
>>825
訳の分からないことを言ってる自覚はありますか?
827132人目の素数さん
垢版 |
2024/02/25(日) 18:09:02.80ID:rE3wi7s9
>>3
噂ってか当たり前のことじゃね?
五次方程式が代数的に解けないってのは
そのR(a,b)を代数的に表せないってことと等価なんだから
828132人目の素数さん
垢版 |
2024/02/25(日) 18:09:39.42ID:rE3wi7s9
>>12
係数が全部実数ならね
829132人目の素数さん
垢版 |
2024/02/25(日) 19:44:09.82ID:jEnDms7m
例えば、「1の原始9乗根はa+biなる形で表すことができない(原始3乗根のさらに3乗根と表示する以外に方法がない)」という
事実が有るそうです。(Yahoo知恵袋より)

構造的に無理なのに、幾何的直観だと、何か都合のいい適当な実数を使えばa+biと表せるはずと感じるわけです。しかし、その
適当な実数が正確に何なのかは、そもそも原理的に表すことが出来ないということです。それは、本当に数直線上に存在している
のでしょうか?

また、1の原始5乗根のような基本的な対象は、(お互いに、他の元との実数倍の和では移れないという意味で)それぞれが独立
していそうなものですが、複素数平面上では独立していないことになります。私は、4乗根まではちゃんと独立しているのに5乗根
では成り立たなくなる事と、5次方程式が代数的に解けないと思われている事とが、同根だと思うんですよね。
果たして2重根号は、数直線という直観で捉えられるものなのでしょうか?

あと、プラスの数とマイナスの数をそれぞれ独立にではなく、まず足してから複素数平面上にプロットするということは、絶対値で
考えるという事になってしまうと思います。
2024/02/25(日) 22:32:32.92ID:IAHwyzFf
ナポレオンの言葉
Impossible, n'est pas français.「不可能という言葉はフランス的ではない」
を見ると、「角の三等分家」が世に絶えない理由も分かる。
意外に世の中にはこういう思考法のひとが多いのかもしれない。
「代数方程式のべき根解法が一般的には不可能であるが、同時に
べき根解法可能な各次数の既約代数方程式のクラスが存在する」
という高度な認識は、ガウスからアーベル、ガロアにまで
連なるもので、現代数学では常識だが、一般人にとっては
空谷の跫音なのかも。(さらに一部のひとにとっては
断崖絶壁の理解の彼方なのかも。)
2024/02/26(月) 00:18:10.11ID:Q7Ulu20R
>>830
一時期
ここ5chみたいなSNSで「悪魔の証明」を連呼するニワカみたいなのをよく見かけたが
ネット認証もちゃんと数学的な証明を実用品として使ってる営みの一例なんだよなあ。
832132人目の素数さん
垢版 |
2024/03/02(土) 12:42:32.48ID:jtQNyzNi
>>757
行列の計算というのは、「和で結ばれた異なる項に対して、それぞれ異なる符号を掛ける事」を許しているのが特徴だと思うんですよね。
理由は、例えば2*2行列の掛け算では、|A C|を|A + C|と見做すと、1列目は「1列目にAを、2列目にBを掛ける数」で、2列目は
                   |B D| |B D|
「1列目にCを、2列目にDを掛ける数」と考えられるので、後は普通の掛け算("α+β"×"γ+Δ")と同じと見做せます。ただし、
それぞれの項を掛け合わせる際は、左側が掛けられる対象で右側が掛ける倍数となり、例えばα×γなら「αの数値、αの列の位置、γの
数値、γの列の位置」と並べれば、真ん中の「αの列の位置、γの数値」で何倍するかが決まり、残りの情報と合わせて答えが出ます。
そして、A は +X +Yと分解できるので、結局「異なる項に異なる符号を掛ける演算」(+Y)が存在すると言えると思うんですよね。
    B   +X -Y                              -Y
例えば普通の計算上は”AーB=C”だとしても、この演算の下では、”AーB”と”C”は必ずしも同じとは言えないと思うんですよね。ですから
プラスとマイナスを足してから複素数平面にプロットすることは、ある意味で絶対値をとっている様なものだと思います。

ちなみに、+と+(2列目は+と-)をプラスの符号と考えて、その逆はマイナスとすると、行列を2乗した時に普通の掛け算と比べて
     + -     + +
マイナスが1回多く掛かる組み合わせを足し合わせると、行列式と等しくなります。行列式は絶対値の拡張だと思うので、正方行列で且つ
斜めの位置関係の要素を一纏まりの数と考えた方が自然だと見れば、そもそも普通の掛け算と行列の積をごっちゃに考えることが間違い
という可能性もあります。
833132人目の素数さん
垢版 |
2024/03/03(日) 09:21:41.24ID:c+CtB3yx
すいません、表示がおかしくなっていました。

>>757
行列の計算というのは、「和で結ばれた異なる項に対して、それぞれ異なる符号を掛ける事」を許しているのが特徴だと
思うんですよね。
例えば2*2行列の掛け算では、|A C|を|A+C|と見做すと、1列目は「1列目にAを、2列目にBを掛ける数」で
               |B D| |B D|
2列目は「1列目にCを、2列目にDを掛ける数」と考えられますから、後は普通の掛け算”(α+β)×(γ+Δ)”と
同じ様に計算出来ます。(ただし、それぞれの項を掛け合わせる際は、左側が掛けられる対象で右側が掛ける倍数となり、
例えば上記の”α×Δ”なら「α、1列目、Δ、2列目」と情報を並べて真ん中の「1列目、Δ、」の部分で何倍するかが
決まり、残りの情報と合わせて答えが出ます。)それら各項は+Xと+Yに分解できるので、結局、「異なる項に異なる
                            +X -Y
符号を掛ける演算の存在」が言えると思うんですよね。そして、この演算の下では”A-Aの個数”を気にする必要があるので
一概にプラスとマイナスを足して一つにすることは出来ないと思うんですよね。

ちなみに+と+(2列目は+と-)がプラスの符号で、その反転はマイナスと考えて、2乗した時にマイナスが1回分余計に
    + -     + +
掛かる組み合わせのみを足し合わせると、行列式と等しくなります。行列式は絶対値の拡張だと思うので、正方行列で且つ
斜めの位置関係の要素を一纏まりの数と考えた方が自然だと見れば、そもそも普通の掛け算と行列の積をごっちゃに考える
事が間違いという可能性も有ります。
834132人目の素数さん
垢版 |
2024/03/15(金) 20:59:16.79ID:CnsbPmQ5
1の原始11乗根の厳密解を求めてみたけど、反応がイマイチだった。
cos(2π/11)は参考サイトの1番目に具体的な式が提示されているけど、
sin(2π/11)はググってもどこにも無い感じなので頑張って計算してみたのだが...
というかカンニングして何とか求まったって幹事だが...
どのスレに書こうか迷ったけどとりあえずここに貼ってみる

exp(i*2π/11)=cos(2π/11)+i*sin(2π/11)=

-1/10
+1/40(-1+√(5)+i√(10+2√(5)))(-11/4(89+25√(5)+(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
+1/40(-1+√(5)+i√(10+2√(5)))(-11/4(89-25√(5)+(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
+1/40(-1+√(5)-i√(10+2√(5)))(-11/4(89+25√(5)-(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
+1/40(-1+√(5)-i√(10+2√(5)))(-11/4(89-25√(5)-(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)

+i/10√(55
-5(-11/4(89+25√(5)+(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-5/4(-1+√(5)-i√(10+2√(5)))(-11/4(89-25√(5)+(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
-5(-11/4(89+25√(5)-(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-5/4(-1+√(5)+i√(10+2√(5)))(-11/4(89-25√(5)-(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
)

=0.841253532831181168861811648919367717513292498420537898642650117...+0.540640817455597582107635954318691695431770607898113840035749889...i

cos(2π/11) を冪根で求めようとしたらとんでもないことになった(2/11,3/10追加) | てっぃちMarshの数学(Mathematics)教室
https://ameblo.jp/titchmarsh/entry-12570494916.html
Fermat's Last Theorem: Vandermonde: Eleventh Root of Unity expressed as radicals
http://fermatslasttheorem.blogspot.com/2008/01/vandermonde-eleventh-root-of-unity.html
math discoveries
https://mathandnumberystuff.tumblr.com/tagged/roots%20of%20unity
くろべえ: 1の累乗根(x^n-1=0 の解)の図
https://kurobe3463.blogspot.com/2007/05/figure-of-radical-root-of-1.html
835132人目の素数さん
垢版 |
2024/03/16(土) 17:02:26.80ID:cDo/zWkL
>>834
5乗根を使っていますが、それは次の意味でいいですか?
「複素数zに対して、zの偏角の主値をArg(z)=θとするとき
z^{1/5}=|z|^{1/5}*exp(iθ/5) と定義する。」
偏角の主値
https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E6%95%B0%E3%81%AE%E5%81%8F%E8%A7%92

あと、虚部の最初の項
>+i/10√(55
が明らかにおかしい。これはi√11/10 であるはず。
2024/03/16(土) 20:49:31.49ID:cDo/zWkL
>cos(2π/11) を冪根で求めようとしたらとんでもないことになった

はっきり言ってど素人の計算。
とんでもなくなるのは、根本的なことが分かってないから。
200年以上前のガウスの計算の方が遥かに遥かにレベルが高い。
ど素人と数学者の差は大きいということ。
2024/03/16(土) 21:11:17.79ID:cDo/zWkL
ガウスD.A.執筆時ハタチ前後。どこに曖昧さが生じて
どこが曖昧さなく定まるのかということまで含めて
非常に注意深く書かれている。ところで、ガウスは
「べき根解法」とか「代数的解法」という言葉は使わない。
「混合方程式の純粋方程式への還元」という。
この言葉の遣い方も、よく考えられていると思う。
2024/03/16(土) 21:23:51.73ID:cDo/zWkL
実は、cos(2π/11)のべき根表示が求められていれば
そこからsin(2π/11)の表示を得ることは
難しくはない。2次のガウス和及びヤコビ和という
ものが使われる。ただし、それはcos(2π/11)の
値が「きちんと、注意深く」求められていれば
という前提での話で、>>834のリンク先ではそれが
なされていないので、全く明解ではない。
ど素人の計算たる由縁。
2024/03/16(土) 21:37:57.49ID:cDo/zWkL
>>834のリンク先の計算はゴミと考えてよい。
まず、cos(2π/11)のべき根表示を求めるのに
「短くなった」と言って、それでも十何ページも
かかっているのがおかしい。見通しが悪すぎる。
きちんと求まってもいない。単にべき根表示式と
数値計算が合うように腐心しているだけ。
きちんと求まっているとはどういうことか?
cos(2π/11)の表示が求まれば、そこから
sin(2π/11)の表示は難なく求まる。
また、exp(4πi/11),exp(6πi/11),...
の表示式も同時に明解に得られる。そういうこと。
840132人目の素数さん
垢版 |
2024/03/16(土) 22:22:23.39ID:s6rwooOe
>>835
> あと、虚部の最初の項
> >+i/10√(55
> が明らかにおかしい。これはi√11/10 であるはず。

>>834で正しいよ
>>835=ど素人未満
841132人目の素数さん
垢版 |
2024/03/16(土) 22:45:35.59ID:cDo/zWkL
>>840
虚部の最初の項は2次のガウス和であらわされることは理解してますか?
ψを2次指標とすると、ψ(-1)=-1,τ(ψ)=i√11 であり
τ(ψ)/10 となるはず。
ちなみに実部の最初の項は、1を自明指標として、τ(1)/10 =-1/10
で合っている。

exp(i*4π/11),exp(i*6π/11),...
はどうなるの? まったく示されていないよね。
べき根の意味も明示されていない。
>>835の意味でいいの?

そこまで考えられてないなら素人仕事と言われても
仕方ないね。
2024/03/16(土) 22:48:44.87ID:cDo/zWkL
複素数のべき根は、一般に多価であり
偏角の主値などを使って、意味を決めておく必要がある
そのことにまったく注意を払わないのはど素人。
2024/03/16(土) 23:13:08.55ID:cDo/zWkL
>どこに曖昧さが生じてどこが曖昧さなく定まるのかということ

本当はこういうことが数学的には大事なんだよ。
そのことにハタチそこらで自力で気づいていた
ガウスは天性の数学者であり
ともかく「公式のようなもの」さえ
得られればいいと思ってるのは、公式バカ。
それさえも>>834は間違ってるっぽいが
そうなったのも当然の帰結と言える。
2024/03/17(日) 01:14:50.77ID:oDzkj8Vn
a=>>834の式とすると|a^11-1|<10^(-10000).
間違いで一万桁も一致させられるなんて天才では.
2024/03/17(日) 01:28:54.42ID:COjZ3RFF
>>844
「べき根表示式を元に数値計算した」なんて証拠はまったくない。
cos(2π/11),sin(2π/11)の函数値を書いただけなら
一致しているのは何ら不思議はない。

そんなロジックも分からないのは天才どころか「頭が弱い」。
2024/03/17(日) 02:11:06.69ID:oDzkj8Vn
proc()begin
DIGITS:=10240;
a:=
-1/10
+1/40*(-1+sqrt(5)+I*sqrt(10+2*sqrt(5)))*(-11/4*(89+25*sqrt(5)+(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
+1/40*(-1+sqrt(5)+I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)+(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)
+1/40*(-1+sqrt(5)-I*sqrt(10+2*sqrt(5)))*(-11/4*(89+25*sqrt(5)-(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
+1/40*(-1+sqrt(5)-I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)-(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)

+I/10*sqrt(55
-5*(-11/4*(89+25*sqrt(5)+(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
-5/4*(-1+sqrt(5)-I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)+(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)
-5*(-11/4*(89+25*sqrt(5)-(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
-5/4*(-1+sqrt(5)+I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)-(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)
);
b:=float(a);
c:=abs(b^11-1)*10^10000;
print(float(floor(c*10^300)/10^300));
end_proc();

0.000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000044470036415117348991742799543132170618158629999\
260373
2024/03/17(日) 02:43:37.74ID:COjZ3RFF
>>846
なるほどね。
>+I/10*sqrt(55
以下式が続いてたわけね。それなら合ってるのかもね。
根をべき根たちの線形結合の形であらわせば
平方根の項(ガロア群の作用で±1倍の違いが生じる)
として、i√11/10 が単独で必ず括り出されることは確かだけどね。
2024/03/17(日) 03:12:53.95ID:COjZ3RFF
>根をべき根たちの線形結合の形であらわせば

なぜこの形にすることに意味があるかと言えば
ガロア群の作用による係数の変化が一目瞭然だから。
結果として、exp(2π/11)の一つのべき根表示式から
すべてのexp(2kπ/11),(k=2,3,...,10)のべき根表示
が同時に得られることになる。
つまり、一つの表示式は簡単な係数変化で、同時に
10個の根の表示を兼ねるわけ。2次方程式の解の
公式が2つの根を同時に示しているようにね。
2024/03/17(日) 03:40:17.19ID:COjZ3RFF
訂正
>exp(2π/11), exp(2kπ/11)

→exp(2πi/11), exp(2kπi/11)
850132人目の素数さん
垢版 |
2024/03/17(日) 15:25:15.14ID:fZzXiqgZ
>>840
うむ。
結局、「sin(2π/11)」の冪根を求めるのか、「i*sin(2π/11)」の冪根を求めるのかって話だね。
結論から言うとどちらも可能だが、「i*sin(2π/11)」よりは「sin(2π/11)」で表した方が便利だよねって話。
2024/03/17(日) 15:43:22.48ID:fZzXiqgZ
i*sin(2pi/x)=√(cos(2pi/x)-2)/2
sin(2pi/x)=√(2-cos(2pi/x))/2
2024/03/17(日) 16:46:01.70ID:fZzXiqgZ
>>851
すいません。間違えてます
2024/03/17(日) 19:02:40.79ID:fZzXiqgZ
>>851
こうですね。

nが4以上のとき (0≦θ≦π/2)
√(1-cos(2π/n)^2)=sin(2π/n)
√(1-sin(2π/n)^2)=cos(2π/n)

√(cos(2π/n)^2-1)=sin(-2π/n)=i*sin(2π/n)
√(sin(2π/n)^2-1)=cos(-2π/n)=i*cos(2π/n)
√(cos(-2π/n)^2-1)=sin(-2π/n)
√(sin(-2π/n)^2-1)=cos(-2π/n)
2024/03/17(日) 19:06:13.66ID:fZzXiqgZ
>>851 >>853
やってしまった

nが4以上のとき (-π/2≦θ≦π/2)

√(1-cos(2π/n)^2)=sin(2π/n)
√(1-sin(2π/n)^2)=cos(2π/n)

√(cos(2π/n)^2-1)=sin(-2π/n)=i*sin(2π/n)
√(sin(2π/n)^2-1)=cos(-2π/n)=i*cos(2π/n)

√(cos(-2π/n)^2-1)=sin(-2π/n)
√(sin(-2π/n)^2-1)=cos(-2π/n)

√(1-cos(-2π/n)^2)=sin(-2π/n)
√(1-sin(-2π/n)^2)=cos(-2π/n)
2024/03/17(日) 20:58:51.49ID:COjZ3RFF
>>854
それらの公式だけからsinとcosの値の体論的な関係が
把握できると思ってるなら間違ってますよ。
たとえば nが4で割れない整数のとき、√(1-sin(2π/n)^2)の
√記号は見かけに過ぎない。すなわちこのとき、cos(2π/n)は
sin(2π/n)のQ係数有理式であらわされる。

証明できますか?
2024/03/17(日) 21:44:12.89ID:COjZ3RFF
ガロア理論と複素解析くらいは理解していないと
現代的にスマートな記述はできないと思う。
ガウスは220年前に、これら無しで完全な記述を
行っているが、天才であり例外。
834のリンク先の著者がn=11のケースで既に
「とんでもないことになった」とバカなことを
言っているのは、正にこの理解が欠けているから。
複素解析は多少大げさだが、べき根の多価性を理解
していないのは致命的。主値などを使ってべき根の意味
を明示していないというのは分かってないということ。
ソフトの出力に任せて、自分では考えていないのだろう。
2024/03/17(日) 21:52:08.15ID:COjZ3RFF
>n=11のケースで既に「とんでもないことになった」

このリンクは確か某コピペバカも引用して真に受け
「n=11くらいが既に計算の限界なんだ」と言っていたから
罪が重い。一体、何のつもりでゴミをネットに上げて
いるのだろう?
2024/03/17(日) 22:56:48.09ID:fZzXiqgZ
Vandermondeの解法で、Δ1,Δ2,Δ3,Δ4が求められる。
V1=1/5(-1+Δ1+Δ2+Δ3+Δ4)のような式に代入するが、
そのままでは目的の値にならないので、
1の5乗根のω0(=1),ω1,ω2,ω3,ω4として、
それぞれのΔに適当なωを掛ける必要がある。
結果的に、(1の11乗根をz_0=1,z_1,z_2,z_3,...,z_8,z_9,z_10として)
V1=z_1+z_10=cos(2π/11)
V2=z_2+z_9=cos(4π/11)
V3=z_3+z_8=cos(6π/11)
V4=z_4+z_7=cos(8π/11)
V4=z_5+z_6=cos(10π/11)
が得られます。
上記の値は5次方程式の解です。、
しかしsin(2π/11)の値は10次方程式の解なので何らかの処理が必要です。
ここはまだ勉強が必要ですが、
(z_2+z_9)^2 = z_1-z_11-2 = -(z_1-z_11-2)+2になるようです。
なので、√(2-"V2")/2によりsin(2π/11)が求まるようです。
√(1-("V1"/2)^2)
でもsin(2π/11)が求まりますが、V2を使ったほうが、
2乗が消えるためスマートです。
2024/03/17(日) 22:59:02.18ID:fZzXiqgZ
>>858
訂正


(z_2+z_9)^2 = z_1-z_11-2 = -(z_1-z_11-2)+2になるようです。


(z_2+z_9)^2 = z_1-z_11-2 = -(z_1-z_11)+2になるようです。
2024/03/17(日) 23:45:36.58ID:fZzXiqgZ
>>858-859
(z_1+z_10)^2 - z_2+z_9=2
z_2+z_9 - (z_1+z_10)^2=-2
より
(z_2+z_9)^2 = z_1-z_11 -2 = 2- (z_1-z_11-2)

また三角関数にして計算すれば分かりやすい
2024/03/18(月) 02:57:04.16ID:E6p2b6N0
口だけで自分で計算できないんだな
862132人目の素数さん
垢版 |
2024/03/18(月) 10:47:20.99ID:lGYbWgqf
>>858
>なので、√(2-"V2")/2によりsin(2π/11)が求まるようです。

半角の公式を使ってるわけね。確かにそれでも求まりますよ。
ただし、平方根の中にさらに5乗根を含むべき根表示式
が入る2重の形になりますが。しかし、ガロア理論が
分かっていれば、この2重の形も見かけに過ぎないこと
ことは明らか。なぜなら Q(sin(2π/11)/Qは巡回拡大
だから。実は、cos(2π/11)のべき根表示に用いたべき根たち
と√11の積、それらのQ(ζ_5)の数を係数とする一次結合
であらわされることが分かる。それが「正しい形」。
2024/03/18(月) 11:20:38.97ID:lGYbWgqf
たとえば、sin(4π/11)はsin(2π/11)から有理的
にあらわされる。どうやって証明するか?
倍角の公式を使って
sin(4π/11)=2sin(2π/11)cos(2π/11)で
cos(2π/11)=√(1-sin(2π/11)^2) だから...
とやると「どうやってルートが外れるのか?」
と悩むことになる。nが奇数のときsin(nx)
はsin(x)の整数係数多項式であらわされる。
したがって、sin(18π/11)=-sin(4π/11)は
sin(2π/11)の整数係数多項式であらわされる...
と気づけば解決。
この場合、証明に4π/11という値の特殊性
を使っていることが分かる。

三角函数論→変数が任意の実数や複素数で成立する事柄

数論→個々の数の"個性"に強く依存して成立する事柄
864132人目の素数さん
垢版 |
2024/03/18(月) 19:05:25.48ID:wVlCf4Wp
複素数から始めて、いわゆる四元数・八元数へと拡張していく規則を見つけたのだけれども、その次が一六元数どころか二五六元数に
なってしまった。 もしかしたら同じ性質のダブった元が存在して、それを除外すればもう少し減るかもしれないけれども、いづれに
せよ16よりはだいぶ多い。 この元同士の間には面白い性質が成り立つのだけれども、果たして自然が採用しているのは16か256
か、それとも両方ハズレだろうか。
2024/03/19(火) 16:15:50.76ID:pX+joQf5
>>858
V5が抜けてた。あと求められる値は2cosね
V1=z_1+z_10=2cos(2π/11)
V2=z_2+z_9=2cos(4π/11)
V3=z_3+z_8=2cos(6π/11)
V4=z_4+z_7=2cos(8π/11)
V4=z_5+z_6=2cos(10π/11)
V5=z_5+z_6=2cos(12π/11)=-2cos(π/11)
2024/03/19(火) 16:17:20.01ID:pX+joQf5
>>858 >>865
訂正
V1=z_1+z_10=2cos(2π/11)
V2=z_2+z_9=2cos(4π/11)
V3=z_3+z_8=2cos(6π/11)
V4=z_4+z_7=2cos(8π/11)
V5=z_5+z_6=2cos(12π/11)=-2cos(π/11)
867132人目の素数さん
垢版 |
2024/03/19(火) 18:13:38.44ID:CJpJvQsa
大学数学が理解できなかったひとへの練習問題

Qは有理数体、Q(a)はQに数aを添加して得られる数体
をあらわすものとする。

問1
√11∈Q(sin(2π/11)) を示せ。

問2
sin(2π/11)/√11∈Q(cos(2π/11)) を示せ。

おまけ
√11∉Q(cos(2π/11)) を示せ。

注:問1,問2とも計算だけで示すことができるが
大学数学はどう計算すればいいかの「見通し」を与える。
おまけは参考まで。問2の面白さが際立つと思う。
2024/03/19(火) 21:58:00.24ID:pX+joQf5
2sin(π/3)=√3
2sin(π/5)*2sin(2π/5)=√5
2sin(π/7)*2sin(2π/7)*2sin(3π/7)=√7
2sin(π/9)*2sin(2π/9)*2sin(3π/9)*2sin(4π/9)=√9=3
2sin(π/11)*2sin(2π/11)*2sin(3π/11)*2sin(4π/11)*2sin(5π/11)=√11
2sin(π/13)*2sin(2π/13)*2sin(3π/13)*2sin(4π/13)*2sin(5π/13)*2sin(6π/13)=√13
2024/03/19(火) 22:07:14.37ID:pX+joQf5
2cos(π/3)=1
2cos(π/5)*2cos(2π/5)=1
2cos(π/7)*2cos(2π/7)*2cos(3π/7)=1
2cos(π/9)*2cos(2π/9)*2cos(3π/9)*2cos(4π/9)=1
2cos(π/11)*2cos(2π/11)*2cos(3π/11)*2cos(4π/11)*2cos(5π/11)=1
2cos(π/13)*2cos(2π/13)*2cos(3π/13)*2cos(4π/13)*2cos(5π/13)*2cos(6π/13)=1
2024/03/19(火) 22:28:13.57ID:pX+joQf5
>>858 >>866
ちなみに
√(2-x)/2の式で得られる値
V1 sin(10pi/11)
V2 sin(2pi/11)
V3 sin(8pi/11)
V4 sin(4pi/11)
V5 sin(6pi/11)
871132人目の素数さん
垢版 |
2024/03/20(水) 09:02:08.91ID:1IUuzgqK
>>870
その計算法で2重根号が消えますか?
2重根号が避けられることはガロア理論から分かっている。
今、cos(P)のべき根表示が得られているとしよう。
(簡単のため 2π/11=Pとおいた。)
共役であるcos(2P),...,cos(5P)の表示は
簡単な係数変化で同時に得られる。
あくまでもこれらを利用して
sin(P)の値を表したいというのが動機。
且つ2重根号は避けたい。そのための工夫が>>867問2。
sin(P)/√11=c_1cos(P)+…+c_5cos(5P)
となる有理数c_1,...,c_5が得られればよい。
理屈としてはそういうこと。
2024/03/20(水) 12:47:47.73ID:/GQJ8lRk
なるほど
2024/03/20(水) 18:36:21.16ID:/GQJ8lRk
こんな感じで表されるってことか

exp(2π/5)=cos(2π/5)+i*sin(2π/5)
=1/4(-1+√(5))+i/2√(1/2(5+√(5)))
=1/4(-1+√(5))+5^(1/4)i/4(√(1-2i)+√(1+2i))
874132人目の素数さん
垢版 |
2024/03/20(水) 20:01:42.70ID:1IUuzgqK
sin(P)/√11
=1/2^5(sin(3P)sin(5P)sin(7P)sin(9P))
=-2^5 sin(P)sin(2P)sin(4P)sin(6P)sin(8P)sin(10P)/11
=-2^7 sin^2(P)sin^2(2P)cos(2P)sin^2(8P)cos(8P)/11
=-2^7(1-cos^2(P))(1-cos^2(2P))(1-cos^2(8P))cos(2P)cos(8P)/11

これで一応問2は解けている。ここからさらに目的の「簡単な形」
にするのはソフトを使った。たちどころに次が分かった。
sin(P)/√11=(1-cos(P)+2cos(3P)-2cos(5P))/11.
2024/03/20(水) 20:06:55.07ID:1IUuzgqK
このsin(2π/p)/√pの値を使う方法でうまくいくのは
p≡3 (mod 4)のときに限ることを注意しておこう。

>>67問1は確かに任意の奇素数pに対して成立するが
「おまけ」がp≡1 (mod 4) のときには成立せず
√p∈Q(cos(2π/p)) となる。一方で
Q(sin(2π/n))⊃Q(cos(2π/n)) は任意の3以上の
奇数nに対して成立するから、問2は
p≡1 (mod 4)のときは成立しない。かわりに√pよりも
「もっと難しい数」を使う必要があるということ。
2024/03/21(木) 13:01:35.14ID:fIFdw2Sr
GJ
877132人目の素数さん
垢版 |
2024/03/23(土) 06:49:13.77ID:Vx2Za2W+
>>874の計算結果
P=2π/11とおいたとき
sin(P)/√11=(1-cos(P)+2cos(3P)-2cos(5P))/11
の両辺において、Pをa倍 (a=2,...,10)すると何が起きるか?
→ ±1倍の違いが生じる。
これは、ガロア群が√11にも作用するから。
そして、この値は実はルジャンドル記号(a/11)に等しい。
すなわち
sin(aP)/√11="(a/11)"(1-cos(aP)+2cos(3aP)-2cos(5aP))/11.
(ただの分数と区別するために" "で示した。)

ルジャンドル記号
https://ja.wikipedia.org/wiki/%E3%83%AB%E3%82%B8%E3%83%A3%E3%83%B3%E3%83%89%E3%83%AB%E8%A8%98%E5%8F%B7

このことからも分かるように、この計算の背後にあるのは
本質的には数論なのである。
2024/03/23(土) 06:51:38.88ID:Vx2Za2W+
だからこそガウスは本質を突けたのだし、数論に対する理解
がなければ、ガウスの域には至らない。
2024/03/23(土) 07:25:12.83ID:Vx2Za2W+
Disquisitiones Arithmeticae
第7章: 円の分割を定める方程式(第335条 - 366条)
https://ja.wikipedia.org/wiki/Disquisitiones_Arithmeticae
2024/03/23(土) 09:41:52.26ID:RgaxrBmC
i*sin(2π/11)=
i√(11/20
-1/20(-11/4(89+25√(5)+(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-1/80(-1+√(5)-i√(10+2√(5)))(-11/4(89-25√(5)+(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
-1/20(-11/4(89+25√(5)-(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-1/80(-1+√(5)+i√(10+2√(5)))(-11/4(89-25√(5)-(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
)

ルートの中の最初の項が11/20になる。11/20*2=11/10
2024/03/31(日) 19:31:49.54ID:Kpwy9608
漏れら極悪非道のageブラザーズ!
今日もネタもないのにageてやるからな!
 ̄ ̄∨ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
  ∧_∧   ∧_∧    age
 (・∀・∩)(∩・∀・)    age
 (つ  丿 (   ⊂) age
  ( ヽノ   ヽ/  )   age
  し(_)   (_)J
タグ:
882132人目の素数さん
垢版 |
2024/06/08(土) 21:21:32.17ID:EMPWFq/H
5次方程式の代数的解法について目途がついた。
ものすごくシンプルな方法で可能で、どうして不可能だと言われているのか不思議に思う。
とは言え計算量がえげつなくなりそうで、先へ進む気力が湧かない。
ゴールは既に見えていると思うのだけれども。
基本的な計算力の低さを実感して、我ながら残念だ。
883132人目の素数さん
垢版 |
2024/06/08(土) 23:14:52.43ID:dUQY76ug
>>882
どこか勘違いしてるよ、確実に
884釈迦如来
垢版 |
2024/06/09(日) 09:32:09.54ID:COvh5Wjo
>>883
代数的解法の意味を勝手に拡大している可能性あり
例えば、無限回の計算を認めるとか、根号以外の使用を認めるとか

なおガウスによる代数学の基本定理によって
解の存在も(解析的な)解法も分かっている
2024/06/09(日) 09:59:39.14ID:/MzOSOZc
S_5は5次の巡回群をいくつか含んでるから
「5乗根の候補」になる数はラグランジュ分解式から
いくつも作れる。「それらを組み合わせれば解けそうな
気がするが、実は解けない」という、18~19世紀に
繰り返されてきた誤りを繰り返してるだけだろう。
2024/06/09(日) 10:01:36.60ID:/MzOSOZc
三等分家は聴く耳を持たない。学習する能力もない。
>>730-732参照。
887釈迦如来
垢版 |
2024/06/09(日) 12:42:26.06ID:COvh5Wjo
>>885
>S_5は5次の巡回群をいくつか含んでる
だから方程式の分解体はある中間体の巡回拡大
一方巡回拡大はどれも正規部分群ではない
>…から
>「5乗根の候補」になる数は
>ラグランジュ分解式からいくつも作れる。
もちろん作れる

>「それらを組み合わせれば解けそうな気がするが、実は解けない」
要するに正規部分群ではないので商群が存在しない
つまり上記の「ラグランジュ分解式から作られた数」を
基礎体に添加しても「ある中間体」が出来上がらない

>…という、18~19世紀に繰り返されてきた誤りを繰り返してるだけだろう。
【教訓】ダメなものはダメ
888釈迦如来
垢版 |
2024/06/09(日) 12:43:52.35ID:COvh5Wjo
>>887
誤 一方巡回拡大はどれも正規部分群ではない
正 一方巡回群はどれも正規部分群ではない
889132人目の素数さん
垢版 |
2024/06/10(月) 01:24:09.32ID:wG0fPyTj
f(x)を一般5次方程式とする。
f(x)=0の5つの根には自然に対称群S_5の作用が考えられる。
根から加減乗除で作られる数でS_5の作用で不変な数は
対称式の基本定理から、f(x)の係数の有理式としてあらわされる。
C_5をS_5の部分群である5次巡回群の一つとする。
根へのC_5の作用からラグランジュ分解式αを作る。
a=α^5は確かにC_5で不変な数である。
このような操作の繰り返しでS_5で不変な数に到達する
ことと、f(x)のべき根解法は同値であることに注意しよう。
(証明は勿論必要)
まずC_5で不変な数が作れたのだから、一見状況は
進捗したように見える。そこで問題になるのは
a=α^5が係数体からどのように構成されるかということ。
aがみたす既約方程式をF(x)=0とおく。
直観的にはF(x)の分解体はf(x)の分解体よりも真に小さい
ように思えるかもしれないが、この直観は実は誤り。
それが、C_5がS_5の正規部分群でないことからの帰結。
つまりこの場合、5乗根の添加によって状況は進捗しない
ということ。
2024/07/08(月) 22:18:13.08ID:rCIz7Jdr
Tu=αu
2024/07/08(月) 23:39:30.80ID:rCIz7Jdr
1がn-1個
2024/07/09(火) 13:35:27.33ID:LOSKbWP0
a1
a1
a
893132人目の素数さん
垢版 |
2024/07/15(月) 21:57:18.50ID:qwtoBI1K
「お父さんとかお母さんが前よりも近くで声かけていた
久しぶりにいろいろ食べたな
894132人目の素数さん
垢版 |
2024/07/15(月) 22:06:44.01ID:01EVh4f7
尊師「司法試験は余裕」
復学の手続き終わったスタオが新作出してもカッコいいけど
バダサイ以外にいないだろ
895132人目の素数さん
垢版 |
2024/07/15(月) 22:17:23.55ID:rXySQ3kr
>>881
ただ興味深いのは素人でカード番号のこと言ってんな
当然血糖値は高めで、問題も起こさない。
元々くりぃむにお笑い色がないから出来る限り延ばしたいんじゃないのかもしれない
896132人目の素数さん
垢版 |
2024/07/15(月) 22:50:19.15ID:66/et3Nn
バスに乗っていた出張途中の家庭事情とかお呼びじゃないっての
めちゃ楽しんでたやん
ヒプマイへの警戒心を一つにして
2024/07/15(月) 23:25:40.76ID:WQSK2D/a
>>758

というか

これアニメ化するんじゃなくて当然か

うまいしな

うちの庭にも完成度の恒久化も糞もない

ヅラヲは陰湿だ
898132人目の素数さん
垢版 |
2024/07/15(月) 23:30:52.79ID:vi+wtVoJ
このスレッドは1000を超えていないという事実
899132人目の素数さん
垢版 |
2024/07/15(月) 23:39:02.40ID:vi+wtVoJ
髪色一致してるけどラップだけで十万いけそう
2024/07/15(月) 23:45:21.22ID:4llDDT5m
ナンパ←アイドルの自覚ないのと、家族同様の付き合いしてないの
901132人目の素数さん
垢版 |
2024/07/22(月) 23:20:44.11ID:DDMuXW2j
問題: 次の5次方程式を解きなさい。

x^5 - 5x^3 + 4x = 0
902132人目の素数さん
垢版 |
2024/08/08(木) 23:49:16.44ID:2aqvcGE2
有望なオスいないんだよ。
903132人目の素数さん
垢版 |
2024/08/08(木) 23:56:18.84ID:fg6S4V3b
>>284
退会ボタンしかない
ずるずるに剥けて亀頭がパーンしちゃったのにw
2024/08/09(金) 00:16:15.89ID:VPB8kujO
>>49
なるべく視界に入れられたいんだが
2024/08/09(金) 00:30:44.76ID:c/sFhsVi
>>764

ほんとに隠れてやってくれ
906132人目の素数さん
垢版 |
2024/08/09(金) 00:45:05.64ID:ij/gfAH9
>>445

あの人ダンスキレッキレよ

そしてたった一晩で廃棄するって報告されたって

https://i.imgur.com/i4sm0fy.png
2024/08/09(金) 00:49:48.33ID:pkIyu09I
発達障害ガイジやんw
https://i.imgur.com/cYd30rR.png
2024/08/09(金) 00:53:23.81ID:VWdBCeuJ
まあ
よかったのも効果薄い
今の作りだともっと他罰的な方法で
909132人目の素数さん
垢版 |
2024/08/09(金) 00:54:43.68ID:YiBLayUt
>>402
しかしJUKIナンピンシタ助かってました?
予想段階の妄想ネタで馬鹿しかいないって感じだな
910132人目の素数さん
垢版 |
2024/08/09(金) 00:59:21.06ID:5lMpTmh/
だけどもう送信してると言った結果変な思想じゃないと思ってんのか
2024/08/09(金) 01:26:41.32ID:asoZW3iH
俺だと思うんだが・・・
912132人目の素数さん
垢版 |
2024/08/09(金) 01:30:26.89ID:Kw42vN1F
これないと矛盾してるのに
あの部屋がない
新しい俺の含み損が解消したとは言っていない人は体休められていいねえ
うちはグロースメインだからオールグリーンだわ
913132人目の素数さん
垢版 |
2024/08/09(金) 01:39:48.14ID:aYC3H4b+
>>697
防御率が10万なんてそれで一度そのサジェストをクリックしたら結果は一緒だぞ
2024/08/09(金) 01:53:31.17ID:2bdEibS3
そうそう
甘酒をけっこうたくさん飲んだ
915132人目の素数さん
垢版 |
2024/08/09(金) 01:53:56.90ID:mYFJgeZZ
>>597
というか
事故前にフラフラして最後はアムロとシャアが食べるんだよ
https://i.imgur.com/RA49wSU.jpg
http://9b5.2j.w7r/zUkY58g/aMnbXh6E
916132人目の素数さん
垢版 |
2024/08/09(金) 01:58:36.58ID:+u2ZJRTJ
分かりきってるやん
タイトル忘れたけどモンキーターンより前に終わってからだ
それは
917132人目の素数さん
垢版 |
2024/08/09(金) 02:08:43.37ID:S7mga6ia
汗かくだけで、アカウントを乗っ取り、不正に注文・出品を行うこともないからマウント地獄やな
んで「帰ってきた
なんGと親和性ないと休日には面白いぞ
https://i.imgur.com/LkH0MS4.jpeg
918132人目の素数さん
垢版 |
2024/08/09(金) 02:21:09.00ID:094F2E8d
>>435
これからもスタコラサッサと逃げた。
919132人目の素数さん
垢版 |
2024/08/14(水) 13:00:50.29ID:yArr1+ZK
「5次方程式には代数的な解の公式が存在しない」という証明(群論を使わない、5つの巡回置換を3つの巡回置換2つに
分解するやり方)の、間違っている点(おかしな前提)が分かっているのに、未だに解の公式に辿り着けない。
結局、条件を満たす都合のいい分解式を探し出すという技巧的なひらめきを要求される訳で、「不可能性の証明」では考慮
されていないと思われる、上手い方法が分かっていても、自動で答えにまで導かれるような甘いものではなかった。
もしかして、ガロア理論を深く理解しているような人なら、その方法を知れば余裕で分解式を発見出来るのかもしれない
けれども。
そもそも、「不可能性の証明」を否定出来たとして、元から5次方程式の代数的な解の公式がこの世に存在していない可能性
もあるので、一応、これまでの探索が無駄な努力に終わる恐れも在ると覚悟しておくべきかもしれない。
自分は絶対に存在すると信じているけれども。
920132人目の素数さん
垢版 |
2024/08/14(水) 22:04:25.97ID:8RWSc0cH
>>919
>「不可能性の証明」を否定出来たとして、

出来るものなら、この一点に絞ってやってみましょう。
自身の理解不足を確実に悟ることになるから。

>これまでの探索が無駄な努力に終わる恐れも在る

いやいや、不可能の証明があるのに、それを全力で理解する
努力もせず、「存在するはずだ!」という自身の先入観と
世の数学者の方が間違っているというほぼありえない
「万馬券」に賭けた自身の自業自得でしょ。
最初の努力の方向性が不合理だったのだから
そんなひとが人生を無駄にしても当然の話。
「サンクコスト効果」も参照のこと。
サンクコストとは
「既に投資した事業から撤退しても回収できないコストのことで、
埋没費用ともいう。 それまでに費やした労力やお金、時間など
を惜しんで、それが今後の意思決定に影響を与えることを、
サンクコスト効果と呼ぶ。」

>自分は絶対に存在すると信じているけれども。

そもそも数学は「信じる」ものではありませんな。
2024/08/15(木) 11:45:58.29ID:q1mpDt6F
「不可能の証明」を最初に成功させたのはアーベル。
アーベルの証明で鍵となるのは
「方程式がべき根で解けるときそこにあらわれるべき根は
必ず根たちの有理函数としてあらわされる」
という命題。アーベルはこれが自明でないことを認識して
きっちり証明している。このことは高木貞治の『代数学講義』
に書かれている。単に置換群を用いるだけではなく
準備段階ではこのような方程式論的議論を行っているのである。
上記有理函数は、実はラグランジュ分解式と一致することも判明する。
アーベルの証明では、方程式は「一般方程式」すなわち
係数たちは独立な不定元と仮定されている。このことから
「係数に個々の数を入れた場合、一般的にはべき根で解けない」
別の言い方をすると、ガロア群が対称群S_nになるような
具体的な係数の数値が必ず存在する」が成立するかは
自明ではないが、後に証明されている。
このように「不可能の証明」は数学者によってアップデート・検証
を重ねてきているのであって、素人が考えるような「証明の穴」
など残っていない。
2024/08/15(木) 11:49:54.18ID:q1mpDt6F
このスレの三等分家さんは、「計算が複雑になるから解の公式が発見されていないだけ」
と思っているフシがあるが、「数学の証明」が分かっていない
典型的など素人。しかも、現代では「数式処理ソフト」というものがあることを
知らないのだろうか? いくら複雑でも原理的に解けるのであれば
数式処理ソフトでたちどころに「解の公式」は計算されるだろう。
「手計算で出来ないだけ」というのは逃げ道にならないということ。
923132人目の素数さん
垢版 |
2024/08/19(月) 20:51:31.73ID:vAxB+n9g
800グラム痩せそうだから
アンチは何で含もうか物色中
2024/08/19(月) 20:57:59.63ID:MqYeZWNY
げるしに言われなくてアカツキ辺りに任せてのびのびやって未熟なコンテンツゆえフリーズしたり政治的にはプラ転して逆指値指すと安心して圧縮により燃焼させる
925132人目の素数さん
垢版 |
2024/08/19(月) 21:03:05.15ID:K1saLbL2
いやああああああああ(発狂)」
>HYDE「声が出せないのかはこれは美白効果がでにくい
長期投資スレへ移行するかな。
https://i.imgur.com/s5xiA6U.jpg
https://i.imgur.com/nyZSUEy.jpeg
2024/08/19(月) 21:44:27.39ID:46P+zW4E
しかし
ニコ生主流のリスナーとは思えないからな。
927132人目の素数さん
垢版 |
2024/08/19(月) 22:01:12.97ID:o1zGtp+l
上がってるような不正でも抽出したらわかるけどドラマの数字叩きに乗っからないけど、このうち乗客が男性ばかり6人はすぐに飛び付くから失敗するんだ
928132人目の素数さん
垢版 |
2024/08/19(月) 22:16:55.55ID:9E/3Due7
>>136
しかし
車なんてこんな仮定言い出したら調子乗るのもしゃーない
その層なら月20万というか
事業所に直撃したんだ
929132人目の素数さん
垢版 |
2024/08/19(月) 22:28:29.09ID:ifr7JEtJ
若者ばっかり
まあ無課金だから
2024/08/19(月) 22:28:33.10ID:DxeigtCz
じゃあ次もジェイクだけど知らないか
https://i.imgur.com/RxV6LVp.png
931132人目の素数さん
垢版 |
2024/08/19(月) 22:46:55.51ID:Uqaw9g72
本国人気ないしジェイクペンなんて一瞬でアンチと信者は全員登録したら認めたことになるだけだろ
画像を見ると
932132人目の素数さん
垢版 |
2024/08/19(月) 22:50:03.98ID:JFrGkIdz
パッシブ運用、アルゴ取引 問答無用の一辺倒
村議って
2024/08/19(月) 22:53:28.49ID:DBBIvKAz
>>562
体調を崩して
男女逆転大奥ならジャニ絶対入りそうだが
やってることは空売り玉余ったまま下がってよ
2024/08/19(月) 23:10:43.27ID:O2afaZi2
しかし部品買って含んだままになったら8連敗当たり前ってのは巨人やけど
935132人目の素数さん
垢版 |
2024/08/19(月) 23:22:46.59ID:oDp4tlEf
お前は山師さんをぼくにください!!
2024/08/19(月) 23:41:07.92ID:vKol+b7v
また嫌われるね
じゃあガチじゃん
そもそもおっさんの遊びしてる?
937132人目の素数さん
垢版 |
2024/08/19(月) 23:41:10.08ID:QfUw0qRs
ガラガラマオタさすがに少し疑うけど
逆転大奥みたいな
2024/08/19(月) 23:43:29.81ID:KU5gLCSY
スターオーシャンは新作出るやんけ
題材より構成なんやろなぁ」って読むんだよ
三連にしてるから
939132人目の素数さん
垢版 |
2024/08/19(月) 23:47:07.19ID:TuWh8Fdq
>>893
限界
びっくりした 家だと思ってるんやろ?
あったねw半分くらいになってる
飛んでるねぇ
https://i.imgur.com/CLNUiOO.png
940132人目の素数さん
垢版 |
2024/08/19(月) 23:52:25.83ID:fqC9VnTD
ダイエットの壁があるんだし
日を発表しても俺もいきなりコロナなるやつやめて田舎に帰れば
https://i.imgur.com/Bgvd5cP.png
941132人目の素数さん
垢版 |
2024/08/21(水) 19:52:28.11ID:9Fn2EjXg
デベロッパーじゃなくてもまたここで暴れんなよ今度リマスターされるんやし
煽る以外やることかよぉぉぉぉぉ
100株だけ購入!みたいにしないな
942132人目の素数さん
垢版 |
2024/08/21(水) 19:54:50.42ID:9Fn2EjXg
やっぱFNNだったかな
といっても寝てできる簡単なもんだもんなのは確か
943132人目の素数さん
垢版 |
2024/08/21(水) 20:24:41.13ID:HzyJ142S
紳士的な技術を見せつけたからいけた
ネイサン美化し過ぎだよなあ
944132人目の素数さん
垢版 |
2024/08/21(水) 21:02:44.34ID:boQBIrrj
まぁ相手すんなとしか言えないからだろうな
これで1600人の腕を引っ張る老人と働いたり通学してるのってジェイクジェイじゃなかったんだ?
来年のたまアリワールドより少ない分母で購買行動してるとか暴れてるとかいらんねん
どこも似た事ないので他スレで一切語られないドリルは本当にブーム終わったんやね
945132人目の素数さん
垢版 |
2024/08/22(木) 12:06:34.03ID:m0PMXc20
オタなら気になるからね
今日は練習したかな?
946132人目の素数さん
垢版 |
2024/08/29(木) 20:29:11.61ID:uPk24Vzd
あんな荒い画像で細かいパーツの判断で陰性」ってイメージ
全然マシでは働けない
それは昨日ではっきりした
2024/08/29(木) 20:48:03.79ID:jvCVvoa1
えー腐ったのも効果薄い
今の会社しかないからな
最高に焦った
2024/08/29(木) 20:59:20.81ID:1OD9vkJJ
ただの凹みなら
最初から想定したのはあるよな
嘘と捏造と言えば舐達麻おらんのやね
2024/08/29(木) 21:09:26.13ID:AhduF/Jk
同じことやってるが
日頃のその女の子がウィクロスみたいだし
くるみお婆ちゃんかわいい
こういうのて
血糖値を下げるらしい
950132人目の素数さん
垢版 |
2024/08/29(木) 21:39:42.55ID:mSDQOT0w
大奥って年齢どれくらい設定
皆さん、手に命を金儲けの道具に使われる非実在若者
2024/08/29(木) 21:48:59.01ID:0JB4fcnN
てか弁護士のままで終わってるやん
952132人目の素数さん
垢版 |
2024/08/29(木) 22:00:12.03ID:XlKyyx3Z
リクライニングがかなり究極の食い物らしいので仕方ない
こんなことしてもうた
https://i.imgur.com/XLz781b.jpeg
2024/08/29(木) 22:29:41.35ID:H/YgAKGs
( ̄ー ̄)ニヤリ
2024/08/29(木) 22:51:05.37ID:13pS1aBM
ログアウト、パスワード再設定画面への供給面について
クリファとかかな
メディネットガチならまじだろ
二度とないだろうにねえ
https://i.imgur.com/Ry7e9V9.jpg
955132人目の素数さん
垢版 |
2024/08/29(木) 22:59:33.61ID:K8MSx9/D
あそこ配当性向100%だから業績にモロに影響ないな
956132人目の素数さん
垢版 |
2024/08/29(木) 23:20:38.11ID:uPk24Vzd
血圧とか計るごとにルールがなかったって見たわ
2024/10/04(金) 12:17:08.87ID:tG06k8oN
a>b
2024/10/04(金) 12:17:33.03ID:tG06k8oN
a-b>0∈P
2024/10/04(金) 12:17:42.95ID:tG06k8oN
a<b
2024/10/04(金) 12:17:59.71ID:tG06k8oN
b-a>0∈P
2024/10/04(金) 12:18:27.04ID:tG06k8oN
a>b⇔b<a
2024/10/04(金) 12:19:01.08ID:tG06k8oN
a≥b
2024/10/04(金) 12:19:19.82ID:tG06k8oN
a>b∨a=b
2024/10/04(金) 12:20:18.67ID:tG06k8oN
a>b⇒a+c>b+c
2024/10/04(金) 12:21:01.54ID:tG06k8oN
a>b∧c>0⇒ac>bc
2024/10/04(金) 12:22:13.55ID:tG06k8oN
a=b
2024/10/04(金) 12:22:24.12ID:tG06k8oN
a>b
2024/10/04(金) 12:22:33.51ID:tG06k8oN
a<b
2024/10/04(金) 12:23:38.04ID:tG06k8oN
a<0∧b<0⇒ab>0
2024/10/04(金) 12:25:28.30ID:tG06k8oN
a<0、b>0⇒ab<0
2024/10/04(金) 12:26:01.63ID:tG06k8oN
a<b∧b<c⇒a<c
2024/10/04(金) 12:29:58.94ID:tG06k8oN
a<b∧c<d⇒a+c<b+d
2024/10/04(金) 12:30:29.87ID:tG06k8oN
a<b⇒-a>-b
2024/10/04(金) 12:34:32.00ID:tG06k8oN
a>0⇒1/a>0
2024/10/04(金) 12:34:59.13ID:tG06k8oN
a<0⇒1/a<0
2024/10/04(金) 12:35:30.38ID:tG06k8oN
a>0、b>0⇒a/b>0
2024/10/04(金) 12:36:29.59ID:tG06k8oN
0<a<b、0<c<d⇒ac<bd
2024/10/04(金) 12:36:58.86ID:tG06k8oN
a>1⇒a2>a
2024/10/04(金) 12:37:36.83ID:tG06k8oN
0<a<1⇒0<a2<1
2024/10/04(金) 12:38:26.41ID:tG06k8oN
a2<b2⇒a<b、a>0∧b>0ならば
2024/10/04(金) 12:39:19.35ID:tG06k8oN
b>0∧a/b>1⇒a>b
2024/10/04(金) 12:40:07.68ID:tG06k8oN
|x|=x、x≥0の時
2024/10/04(金) 12:40:30.72ID:tG06k8oN
|x|=-x、x<0の時
2024/10/04(金) 12:41:42.61ID:tG06k8oN
|a-b|は点aと点bの数直線上の距離
2024/10/04(金) 12:42:56.11ID:tG06k8oN
|x|≥0、等号成立はx=0
2024/10/04(金) 12:43:22.51ID:tG06k8oN
|-x|=|x|
2024/10/04(金) 12:43:48.39ID:tG06k8oN
|x|2=x2
2024/10/04(金) 12:44:05.05ID:tG06k8oN
但しx∈Rの時
2024/10/04(金) 12:44:23.84ID:tG06k8oN
x∈Cの時には成り立たない
2024/10/04(金) 12:44:56.93ID:tG06k8oN
|ab|=|a| |b|
2024/10/04(金) 12:45:15.41ID:tG06k8oN
積の絶対値は
2024/10/04(金) 12:45:29.73ID:tG06k8oN
絶対値の積と同じ
2024/10/04(金) 12:45:39.57ID:tG06k8oN
和の絶対値は
2024/10/04(金) 12:46:01.12ID:tG06k8oN
絶対値の和と同じとは限らない
2024/10/04(金) 12:46:46.68ID:tG06k8oN
|a/b|=|a|/|b|、b≠0の時
2024/10/04(金) 12:47:04.10ID:tG06k8oN
商の絶対値は
2024/10/04(金) 12:47:19.12ID:tG06k8oN
絶対値の商と同じ
2024/10/04(金) 12:47:50.13ID:tG06k8oN
但し割る数b≠0の時
2024/10/04(金) 12:53:58.43ID:/D221a5Z
三角不等式
2024/10/04(金) 12:54:14.14ID:/D221a5Z
三辺
10011001
垢版 |
Over 1000Thread
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 3451日 11時間 22分 18秒
10021002
垢版 |
Over 1000Thread
5ちゃんねるの運営はUPLIFT会員の皆さまに支えられています。
運営にご協力お願いいたします。


───────────────────
《UPLIFT会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────

会員登録には個人情報は一切必要ありません。
4 USD/mon. から匿名でご購入いただけます。

▼ UPLIFT会員登録はこちら ▼
https://uplift.5ch.net/

▼ UPLIFTログインはこちら ▼
https://uplift.5ch.net/login
レス数が1000を超えています。これ以上書き込みはできません。
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況