(左側)
 (二乗平均) > (相加平均) で。

(右側)
 A - B = {√(N+1) - √(N-1)} - 2{√(N+1/2) - √(N-1/2)}
    = 2/{√(N+1) + √(N-1)} -2/{√(N+1/2) + √(N-1/2)}
    > 0,

〔補題1〕
  √(N+1/2) + √(N-1/2) > √(N+1) + √(N-1),
(略証)
 g(x) = √(N+x) は上に凸(g " <0)だから
  √(N+1/2) > (3/4)√(N+1) + (1/4)√(N-1),
  √(N-1/2) > (1/4)√(N+1) + (3/4)√(N+1),
  辺々たす。
または
 {√(N+1/2) + √(N-1/2)}^2 - {√(N+1) + √(N-1)}^2
 = 2{N + √(NN -1/4)} - 2{N + √(NN-1)}
 = 2{√(NN -1/4) - √(NN-1)} > 0,