>>280
>層の話ばかりしてコホモロジーについて語らないのは
>前●ばかりして●入しないようなものである

・なつかしいな、佐藤超函数 で 阪大石橋の生協に
 小松彦三郎先生の講義録を買いに行って 読もうとしたが
 読めなかった
・それが、実は ”層係数コホモロジー”で書かれていると 後で知った
 (下記 ”小松彦三郎, 矢野環”とは、違う気がする きっと違うな・・・)
・いまなら、AIさんのアシストで読めるかもしれないね・・ (^^

(参考)
https://ja.wikipedia.org/wiki/%E4%BD%90%E8%97%A4%E8%B6%85%E5%87%BD%E6%95%B0
佐藤超函数
定式化
実数直線 R 上の佐藤超函数は、上半平面上のある正則函数と下半平面上の別の正則函数との「差」であると考えられる。従って、佐藤超函数を上半平面上の正則函数 f と下半平面上の正則函数 g との対 (f, g) として定義することができる。

厳密ではないが、実数直線そのものの上では佐藤超函数はちょうど正則函数の差 f − g になっているはずである。この差は同じ正則函数を f, g の双方に同時に加えても変化しない。そこでガウス平面 C の全域で正則な函数 h に対して、佐藤超函数 (f, g) と (f + h, g + h) とは同値な佐藤超函数であると定める。

一変数佐藤超函数の定義
前節で述べたような目的は具体的には層係数コホモロジーを考えることで実現することができる。C 上の正則函数全体の成す層を
O
とするとき、実数直線上の佐藤超函数の全体を一次の局所コホモロジー(英語版)群

で定義する

和文
小松彦三郎, 矢野環「佐藤超函数論入門 (佐藤超函数論入門)」『数理解析研究所講究録』第188巻、京都大学数理解析研究所、1973年10月、1-157頁、CRID 1050282677088665728、hdl:2433/107215、ISSN 1880-2818。「まえがき・目次等を追加158ページ以降を削除(2023-02-06).」

https://ja.wikipedia.org/wiki/%E5%B1%A4%E4%BF%82%E6%95%B0%E3%82%B3%E3%83%9B%E3%83%A2%E3%83%AD%E3%82%B8%E3%83%BC
層係数コホモロジー
層コホモロジー(そうコホモロジー、sheaf cohomology)は、アーベル群の層に関連する層の理論の一面であり、ホモロジー代数を用いて、層 F の大域切断の具体的な計算を可能とする。数値的な領域での幾何学的な問題の記述として、層コホモロジーの理論は、重要な幾何学的な不変量の次元を計算することへ有用なツールとして使うことができる。

1950年以後の数年間で急速に発展した層コホモロジーは、リーマン・ロッホの定理のより古典的な方法や代数幾何学の因子の一次系(英語版)(linear system of divisors)の解析や多変数複素函数論やホッジ理論へ結びついた。層コホモロジー群のランク、もしくは次元は、幾何学的なデータの新しい情報源になったり以前の研究の新しい解釈を与えたりする。