nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^n…(2)の解をtとする。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(3)となる。k=(y/2)^n,uは実数。
{(t^n)k+u}=M^nとなるのは、u=M^n-(t^n)kのときのみである。Mは有理数。
(3)に代入すると、(2^n)k=[{(t+1)^n}k+M^n-(t^n)k]-M^nとなる。
整理すると、(2^n)k={(t+1)^n}k-(t^n)kとなる。
(t^n)kは無理数なので、xは無理数となる。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。