>>696
>任意に有限置換群Gが与えられたときに、
>それをガロア群とする代数方程式、
>たとえば係数体がQであるものは
>どうやって作成すればよいだろうか?

良い質問ですね
ガロアの逆問題です(下記)
かなり解決されているが、未解決だという
大きな進展を作れば、フィールズ賞も可能性ありでしょうね

https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%82%A2%E3%81%AE%E9%80%86%E5%95%8F%E9%A1%8C
ガロアの逆問題
ガロアの逆問題(ガロアのぎゃくもんだい、英語: inverse Galois problem)とは、全ての有限群が有理数体 Q のガロア拡大のガロア群として現れるかどうかを問う、ガロア理論の問題である。この問題は、19世紀初期にはじめて提起された[1]未解決問題である。

いくつかの置換群については、その置換群がガロア群となるような有理数体 {\displaystyle \mathbb {Q} }\mathbb{Q} の代数拡大を全て与える生成的多項式(英語版)が知られている。