>>621
>イデールアデール
"代数体の類体論を記述するのに、 イデアル類群よりも自然で有効な道具として Chevalley により導入された"
か
さっぱりですが、貼る
http://www4.math.sci.osaka-u.ac.jp/~ibukiyam/proceedings.html#summer1
伊吹山
整数論研究集会報告集のページ
第1回整数論サマースクール 「アイゼンシュタイン級数について」1993
http://www4.math.sci.osaka-u.ac.jp/~ibukiyam/pdf/%E7%AC%AC%EF%BC%91%E5%9B%9E/1_2.pdf
アデールとカスプ入門 京大・齋藤裕 人間・環境学研究科 第1回整数論サマースクール 1993
このシンポジウムのプログラム責任者から、出席者のなかにアデールやカスプの群論的記述を知らない人もいるかもしれないので、簡単な解説をするように言われたのですが、GL2 のアイゼンシュタイン級数の記述に必要な群論的な準備をすればよいのだろうという気分で引き受けました。 この記事が、 アデールについて未習の方に、少しでも役に立てばと思っております。
§1. アデールイデールは、代数体の類体論を記述するのに、 イデアル類群よりも自然で有効な道具として Chevalley により導入された。 これにより、 類体論は一つの完全系列として記述される。また一般の代数群のアデールは、 Kneser や玉河等により導入され、 代数群の数論的性質やその上の保型形式等の研究に不可欠なものとなっている。 ここでは、2次の線形群の場合に、そのアデール化について復習する。 またカスプについても復習する。
https://ja.m.wikipedia.org/wiki/%E3%82%A2%E3%83%87%E3%83%BC%E3%83%AB%E4%BB%A3%E6%95%B0%E7%BE%A4
アデール代数群
アデール代数群(アデールだいすうぐん,英: adelic algebraic group)は数体 K 上の代数群 G と K のアデール環 A = A(K) 上で定義される半位相群(英語版)である.それは、代数群 G の A-値点全てからなる;適切な位相の定義は G が線型代数群のときに限り簡単である.G がアーベル多様体のときにはそれは技術的な障害を表す.概念は潜在的には玉河数との関係で有用であることが知られてはいるが.アデール上の代数群は数論において広く用いられ,特に保型表現論と二次形式の数論において用いられる.
つづく
純粋・応用数学・数学隣接分野(含むガロア理論)12
■ このスレッドは過去ログ倉庫に格納されています
628現代数学の系譜 雑談 ◆yH25M02vWFhP
2023/01/09(月) 21:50:36.80ID:xY+wMPX4■ このスレッドは過去ログ倉庫に格納されています