クレレ誌:
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AC%E3%83%AC%E8%AA%8C
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。
(引用終り)
そこで
現代の純粋・応用数学・数学隣接分野(含むガロア理論)スレとして
新スレを立てる(^^;
<前スレ>
純粋・応用数学・数学隣接分野(含むガロア理論)11
https://rio2016.5ch.net/test/read.cgi/math/1659249925/
<関連姉妹スレ>
ガロア第一論文及びその関連の資料スレ
https://rio2016.5ch.net/test/read.cgi/math/1615510393/1
箱入り無数目を語る部屋
Inter-universal geometry と ABC予想 (応援スレ) 68
https://rio2016.5ch.net/test/read.cgi/math/1659142644/1
IUTを読むための用語集資料スレ2
https://rio2016.5ch.net/test/read.cgi/math/1606813903/1
現代数学の系譜 カントル 超限集合論他 3
https://rio2016.5ch.net/test/read.cgi/math/1595034113/1
<過去スレの関連(含むガロア理論)>
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む84
https://rio2016.5ch.net/test/read.cgi/math/1582200067/1
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
https://rio2016.5ch.net/test/read.cgi/math/1581243504/1
つづく
純粋・応用数学・数学隣接分野(含むガロア理論)12
■ このスレッドは過去ログ倉庫に格納されています
1132人目の素数さん
2022/12/19(月) 23:31:09.57ID:KRlSoN+A483わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf
2023/01/08(日) 07:32:39.47ID:WgejkQFk 蛇足
>>481
>フーリエ変換(含む離散)を使ってよ
>1の11乗根をべき根表示に、フーリエ変換を使って下さい
そもそも、1は、フーリエ変換って何だかわかってる?
フーリエ変換
https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、
実変数の複素または実数値関数fを、別の同種の関数ˆfに写す変換である。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
これは概要
これじゃ計算できないよね?
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
可積分関数に対する定義
可積分関数 f: R → C のフーリエ変換の定義として、
よく用いられるものにもいくつか異なる流儀がある。
本項では
^f(ξ):=∫[-∞,∞] f(x)exp(-2πixξ) dx
を定義として用いる。
ここでギリシャ文字小文字の ξ は任意の実数である。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
ま、これは変数が連続な場合のフーリエ変換だね
ここで用いるのは、変数が離散の場合の離散フーリエ変換
(つづく)
>>481
>フーリエ変換(含む離散)を使ってよ
>1の11乗根をべき根表示に、フーリエ変換を使って下さい
そもそも、1は、フーリエ変換って何だかわかってる?
フーリエ変換
https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、
実変数の複素または実数値関数fを、別の同種の関数ˆfに写す変換である。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
これは概要
これじゃ計算できないよね?
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
可積分関数に対する定義
可積分関数 f: R → C のフーリエ変換の定義として、
よく用いられるものにもいくつか異なる流儀がある。
本項では
^f(ξ):=∫[-∞,∞] f(x)exp(-2πixξ) dx
を定義として用いる。
ここでギリシャ文字小文字の ξ は任意の実数である。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
ま、これは変数が連続な場合のフーリエ変換だね
ここで用いるのは、変数が離散の場合の離散フーリエ変換
(つづく)
484わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf
2023/01/08(日) 07:51:31.92ID:WgejkQFk >>483のつづき
離散フーリエ変換
https://ja.wikipedia.org/wiki/%E9%9B%A2%E6%95%A3%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
離散フーリエ変換とは、複素関数 f(x)を複素関数 ^f(ξ)に写す写像であって、
次の式で定義されるものを言う。
^f(ξ):=Σ [x=0~N-1] f(x)exp(-2πixξ/N)
ここで、Nは任意の自然数である。
このとき、x=0,… ,N-1を標本点という。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
483の「連続フーリエ変換」と見比べると
・連続の積分∫が、離散では和Σとなる
・連続の積分領域[-∞,∞]が、離散では標本点x=0,… ,N-1となる
といった違いがある
で、ここで重要なのは以下の点
・exp(-2πix/N) (x=0,… ,N-1)が、1のN乗根である
・exp(-2πixξ/N)=(exp(-2πix/N))^ξ (ξ=0,… ,N-1)は、1のN乗根のξ乗である
上記に注目すれば、以下は一目瞭然である!
f(x)を、代数方程式のn個の根を巡回順にならべたものとした場合
^f(ξ)は、n個のラグランジュ分解式となっている
ここまであけすけに書かないと分からないのかい? 1クン
離散フーリエ変換
https://ja.wikipedia.org/wiki/%E9%9B%A2%E6%95%A3%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
離散フーリエ変換とは、複素関数 f(x)を複素関数 ^f(ξ)に写す写像であって、
次の式で定義されるものを言う。
^f(ξ):=Σ [x=0~N-1] f(x)exp(-2πixξ/N)
ここで、Nは任意の自然数である。
このとき、x=0,… ,N-1を標本点という。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
483の「連続フーリエ変換」と見比べると
・連続の積分∫が、離散では和Σとなる
・連続の積分領域[-∞,∞]が、離散では標本点x=0,… ,N-1となる
といった違いがある
で、ここで重要なのは以下の点
・exp(-2πix/N) (x=0,… ,N-1)が、1のN乗根である
・exp(-2πixξ/N)=(exp(-2πix/N))^ξ (ξ=0,… ,N-1)は、1のN乗根のξ乗である
上記に注目すれば、以下は一目瞭然である!
f(x)を、代数方程式のn個の根を巡回順にならべたものとした場合
^f(ξ)は、n個のラグランジュ分解式となっている
ここまであけすけに書かないと分からないのかい? 1クン
485わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf
2023/01/08(日) 08:03:54.14ID:WgejkQFk >>484の追記
離散フーリエ変換
https://ja.wikipedia.org/wiki/%E9%9B%A2%E6%95%A3%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
(離散フーリエ変換の)逆変換にあたる逆離散フーリエ変換は
f(x)=(1/N)Σ [ξ=0~N-1] ^f(ξ)exp(-2πixξ/N)
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
これまた、483で述べたように
n個のラグランジュ分解式の値^f(ξ) (ξ=0~N-1) から
n個の根f(x) (x=0~N-1) への写像となっていることがわかる
そして、離散フーリエ変換も逆離散フーリエ変換も
実はn次元空間C^nからC^nへの線型写像であり
前者は行列で表すと、ヴァンデルモンド行列で
xを1の原始N乗根としたものになっている!
ヴァンデルモンド行列
https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A1%E3%83%B3%E3%83%87%E3%83%AB%E3%83%A2%E3%83%B3%E3%83%89%E3%81%AE%E8%A1%8C%E5%88%97%E5%BC%8F
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
各行が初項1の等比数列であるような正方行列を
ヴァンデルモンド行列(英: Vandermonde matrix)という
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
なぁw
離散フーリエ変換
https://ja.wikipedia.org/wiki/%E9%9B%A2%E6%95%A3%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
(離散フーリエ変換の)逆変換にあたる逆離散フーリエ変換は
f(x)=(1/N)Σ [ξ=0~N-1] ^f(ξ)exp(-2πixξ/N)
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
これまた、483で述べたように
n個のラグランジュ分解式の値^f(ξ) (ξ=0~N-1) から
n個の根f(x) (x=0~N-1) への写像となっていることがわかる
そして、離散フーリエ変換も逆離散フーリエ変換も
実はn次元空間C^nからC^nへの線型写像であり
前者は行列で表すと、ヴァンデルモンド行列で
xを1の原始N乗根としたものになっている!
ヴァンデルモンド行列
https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A1%E3%83%B3%E3%83%87%E3%83%AB%E3%83%A2%E3%83%B3%E3%83%89%E3%81%AE%E8%A1%8C%E5%88%97%E5%BC%8F
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
各行が初項1の等比数列であるような正方行列を
ヴァンデルモンド行列(英: Vandermonde matrix)という
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
なぁw
486わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf
2023/01/08(日) 08:13:23.57ID:WgejkQFk さて、>>483-485を読んだ上で、
1クンがなんと返答するか予測しよう
「な、なるほど
ラグランジュ分解式が実は離散フーリエ変換であり
それがヴァンデルモンド行列で表せることはわかった
また、1の11乗根のうち、1以外の10根については
実部(cos)が等しい2個づつの5つの対に分けることができ
結果として5次方程式に帰着できることも認めざるを得ん
し、しかし!
それだけでは1の11乗根を「どうやって」(5乗根で)ベキ根表示するのか
全然わからんではないかっ!」
やっと、1クンの本当のつまづきの石が明らかになりました
そもそも、フーリエ変換が分かってない、というのは
まあ、見かけのつまづきの石ですね
(それを明らかにするのに、3つもコメント書きましたけどw)
で、ベキ根の中身をどうやって求めるのか?それは・・・
(つづく)
1クンがなんと返答するか予測しよう
「な、なるほど
ラグランジュ分解式が実は離散フーリエ変換であり
それがヴァンデルモンド行列で表せることはわかった
また、1の11乗根のうち、1以外の10根については
実部(cos)が等しい2個づつの5つの対に分けることができ
結果として5次方程式に帰着できることも認めざるを得ん
し、しかし!
それだけでは1の11乗根を「どうやって」(5乗根で)ベキ根表示するのか
全然わからんではないかっ!」
やっと、1クンの本当のつまづきの石が明らかになりました
そもそも、フーリエ変換が分かってない、というのは
まあ、見かけのつまづきの石ですね
(それを明らかにするのに、3つもコメント書きましたけどw)
で、ベキ根の中身をどうやって求めるのか?それは・・・
(つづく)
487132人目の素数さん
2023/01/08(日) 08:19:36.55ID:wnwNXypJ これ>>485って割りとポピュラーな話じゃないか?
488わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf
2023/01/08(日) 08:25:06.02ID:WgejkQFk >>486のつづき
さて、ベキ根の中身をどうやって求めるのか?
一番安直な答えは以下
「ゴチャゴチャいわずに、ラグランジュ分解式を5乗しろ
そうすれば、根が全部消えて、1の5乗根だけの式になる
それの5乗根が、ラグランジュ分解式の値」
ただ、一度にラグランジュ分解式を5乗すると死ぬのでw まず2乗を計算すると、
あーら不思議、実は別のラグランジュ分解式と1の5乗根による多項式の積になる。
さらに、2つのラグランジュ分解式同士の積は
2つとは別のラグランジュ分解式と1の5乗根による多項式の積
もしくはー11になる。
これを利用すれば、ベキの中身が1の5乗根の多項式で書けるのはもちろん
ラグランジュ分解式の1つの値が求まれば、他のラグランジュ分解式の値は
その1つを用いて全部表すことができてしまう。
ドヤぁ!
さて、ベキ根の中身をどうやって求めるのか?
一番安直な答えは以下
「ゴチャゴチャいわずに、ラグランジュ分解式を5乗しろ
そうすれば、根が全部消えて、1の5乗根だけの式になる
それの5乗根が、ラグランジュ分解式の値」
ただ、一度にラグランジュ分解式を5乗すると死ぬのでw まず2乗を計算すると、
あーら不思議、実は別のラグランジュ分解式と1の5乗根による多項式の積になる。
さらに、2つのラグランジュ分解式同士の積は
2つとは別のラグランジュ分解式と1の5乗根による多項式の積
もしくはー11になる。
これを利用すれば、ベキの中身が1の5乗根の多項式で書けるのはもちろん
ラグランジュ分解式の1つの値が求まれば、他のラグランジュ分解式の値は
その1つを用いて全部表すことができてしまう。
ドヤぁ!
■ このスレッドは過去ログ倉庫に格納されています