【質問者必読!!】
まず>>1-4をよく読んでね
数学@5ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
http://mathmathmath.dotera.net/
・まずは教科書、参考書、web検索などで調べるようにしましょう。(特に基本的な公式など)
・問題の写し間違いには気をつけましょう。
・長い分母分子を含む分数はきちんと括弧でくくりましょう。
(× x+1/x+2 ; ○((x+1)/(x+2)) )
・丸文字、顔文字、その他は環境やブラウザによりうまく表示できない場合があります。
どうしても画像を貼る場合はPCから直接見られるところに見やすい画像を貼ってください。
ピクトはPCから見られないことがあるので避けてください。
・質問者は名前を騙られたくない場合、トリップを付けましょう。
(トリップの付け方は 名前(N)に 俺!#oretrip ←適当なトリ)
・質問者は回答者がわかるように問題を書くようにしましょう。
でないと放置されることがあります。
(変に省略するより全文書いた方がいい、また説明なく習慣的でない記号を使わないように)
・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。
それがない場合、放置されることがあります。
(特に、自分でやってみたのに合わないので教えてほしい、みたいなときは必ず書くように)
・回答者も節度ある回答を心がけてください。
・970くらいになったら次スレを立ててください。
※前スレ
高校数学の質問スレ Part420
https://rio2016.5ch.net/test/read.cgi/math/1658820329/
高校数学の質問スレ Part421
レス数が900を超えています。1000を超えると表示できなくなるよ。
2022/09/08(木) 21:03:07.97ID:nTu3dFpc
805132人目の素数さん
2022/09/25(日) 20:13:13.90ID:Kob8sbcV806132人目の素数さん
2022/09/25(日) 20:13:36.50ID:Kob8sbcV807132人目の素数さん
2022/09/25(日) 20:13:45.86ID:Kob8sbcV >>自作問題を質問と称して出題することは荒らしですか?
>
>もちろん荒らしです。
>何度言われてもやる人がいますが、人間のクズです
>
>もちろん荒らしです。
>何度言われてもやる人がいますが、人間のクズです
808132人目の素数さん
2022/09/25(日) 20:21:17.02ID:J175HYtP809132人目の素数さん
2022/09/25(日) 20:27:20.64ID:J175HYtP810132人目の素数さん
2022/09/25(日) 20:33:53.33ID:J175HYtP811132人目の素数さん
2022/09/25(日) 20:44:36.93ID:Kob8sbcV >>自作問題を質問と称して出題することは荒らしですか?
>
>もちろん荒らしです。
>何度言われてもやる人がいますが、人間のクズです
>
>もちろん荒らしです。
>何度言われてもやる人がいますが、人間のクズです
812132人目の素数さん
2022/09/25(日) 20:44:52.31ID:Kob8sbcV813132人目の素数さん
2022/09/25(日) 20:44:57.97ID:Kob8sbcV >>809
>809 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:27:20.64 ID:J175HYtP
>809 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:27:20.64 ID:J175HYtP
814132人目の素数さん
2022/09/25(日) 20:45:20.49ID:Kob8sbcV815132人目の素数さん
2022/09/25(日) 20:45:27.26ID:Kob8sbcV あはははは
荒らし行為はやめてください!
荒らし行為はやめてください!
816132人目の素数さん
2022/09/25(日) 20:45:40.45ID:Kob8sbcV817132人目の素数さん
2022/09/25(日) 20:46:15.80ID:Kob8sbcV すなわち既約剰余系の数がφ(n)
ay+bx=k、(a, B)=1
ay+bbx=abより
φ(a)φ(b)=φ(ab)となる。
例えば3y+5x=15のすると
ay+bx=k、(a, B)=1
ay+bbx=abより
φ(a)φ(b)=φ(ab)となる。
例えば3y+5x=15のすると
818132人目の素数さん
2022/09/25(日) 20:46:25.48ID:Kob8sbcV819132人目の素数さん
2022/09/25(日) 20:46:36.34ID:Kob8sbcV820132人目の素数さん
2022/09/25(日) 20:46:46.82ID:Kob8sbcV >>812
>
>> μ(d)) = 0.
>>810 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:33:53.33 ID:J175HYtP
>813 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:44:57.97 ID:Kob8sbcV
>>>809
>>809 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:27:20.64 ID:J175HYtP
>814 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:45:20.49 ID:Kob8sbcV
>>>800
>>あはははは
>>荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
>815 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:45:27.26 ID:Kob8sbcV
>あはははは
>荒らし行為はやめてください!
>
>> μ(d)) = 0.
>>810 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:33:53.33 ID:J175HYtP
>813 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:44:57.97 ID:Kob8sbcV
>>>809
>>809 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:27:20.64 ID:J175HYtP
>814 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:45:20.49 ID:Kob8sbcV
>>>800
>>あはははは
>>荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
>815 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:45:27.26 ID:Kob8sbcV
>あはははは
>荒らし行為はやめてください!
821132人目の素数さん
2022/09/25(日) 20:47:09.34ID:Kob8sbcV >>808
>よって, Σ[d|n] φ(n/d) = n である.
>809 3 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:27:20.64 ID:J175HYtP
>よって, Σ[d|n] φ(n/d) = n である.
>809 3 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 20:27:20.64 ID:J175HYtP
822132人目の素数さん
2022/09/25(日) 20:47:31.17ID:Kob8sbcV823132人目の素数さん
2022/09/25(日) 20:47:40.31ID:Kob8sbcV824132人目の素数さん
2022/09/25(日) 20:48:17.10ID:Kob8sbcV825132人目の素数さん
2022/09/25(日) 20:48:25.36ID:Kob8sbcV 17ぐらいの値になりそうな気がするけど、どうしてtanθで置換したのか、どうやって∫dθ/cos^3θが出たかがなぞ。
1/2-t=sinθと置換して-dt=cosθdθ
dt=-cosθdθ
√{1-(1/2-t)^2}=cosθ
∫[θ=π/2→π/6]と∫[θ=π/6→0]を積分する。
置換しないtの部分は5π/3だと思う。
1/2-t=sinθと置換して-dt=cosθdθ
dt=-cosθdθ
√{1-(1/2-t)^2}=cosθ
∫[θ=π/2→π/6]と∫[θ=π/6→0]を積分する。
置換しないtの部分は5π/3だと思う。
826132人目の素数さん
2022/09/25(日) 20:48:32.78ID:Kob8sbcV827132人目の素数さん
2022/09/25(日) 20:48:53.12ID:Kob8sbcV828132人目の素数さん
2022/09/25(日) 20:49:12.13ID:Kob8sbcV >あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
829132人目の素数さん
2022/09/25(日) 20:49:24.70ID:Kob8sbcV >あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!>あはははは
>荒らし行為はやめてください!
あはははは
荒
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!>あはははは
>荒らし行為はやめてください!
あはははは
荒
830132人目の素数さん
2022/09/25(日) 20:49:36.95ID:Kob8sbcV >あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
>あはははは
>荒らし行為はやめてください!
あはははは
荒らし行為はやめてください!
831132人目の素数さん
2022/09/25(日) 20:50:11.95ID:Kob8sbcV >>自作問題の出題は許されるのでしょうか?
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。
832132人目の素数さん
2022/09/25(日) 20:50:24.24ID:Kob8sbcV >>自作問題の出題は許されるのでしょうか?
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。
833132人目の素数さん
2022/09/25(日) 20:50:35.61ID:Kob8sbcV >>自作問題の出題は許されるのでしょうか?
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。>>自作問題の出題は許されるのでしょうか?
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。>>自作問題の出題は許されるのでしょうか?
>
>許されません。そんなことをするのはキチガイの所業です。
>自作問題スレは他にあるので、そちらに投稿してください。
793 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 19:56:14.28 ID:kMESd9FZ
1
a, b, c, …はどの2個も互いに素であるとする。
834132人目の素数さん
2022/09/25(日) 20:51:14.92ID:Kob8sbcV >>810
x=a1+m1tとおける
a1+m1t≡a2 modm2
m1t≡a2-a1 modm2
(m1, m2)=Gとすると
π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
1/2-t=cosθとおくと、
-dt=-sinθdθ
dt=sinθdθ
π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
=π^2√3-π^2/6-π√3/4
=14.0893726833……
x=a1+m1tとおける
a1+m1t≡a2 modm2
m1t≡a2-a1 modm2
(m1, m2)=Gとすると
π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
1/2-t=cosθとおくと、
-dt=-sinθdθ
dt=sinθdθ
π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
=π^2√3-π^2/6-π√3/4
=14.0893726833……
835132人目の素数さん
2022/09/25(日) 20:51:26.81ID:Kob8sbcV >>811
x=a1+m1tとおける
a1+m1t≡a2 modm2
m1t≡a2-a1 modm2
(m1, m2)=Gとすると
π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
1/2-t=cosθとおくと、
-dt=-sinθdθ
dt=sinθdθ
π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
=π^2√3-π^2/6-π√3/4
=14.0893726833……
x=a1+m1tとおける
a1+m1t≡a2 modm2
m1t≡a2-a1 modm2
(m1, m2)=Gとすると
π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
1/2-t=cosθとおくと、
-dt=-sinθdθ
dt=sinθdθ
π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
=π^2√3-π^2/6-π√3/4
=14.0893726833……
836132人目の素数さん
2022/09/25(日) 20:51:47.66ID:Kob8sbcV m1t≡a2-a1 modm2
(m1, m2)=Gとすると
π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
1/2-t=cosθとおくと、
-dt=-sinθdθ
dt=sinθdθ
π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
=π^2√3-π^2/6-π√3/4
=14.0893726833……
(m1, m2)=Gとすると
π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
1/2-t=cosθとおくと、
-dt=-sinθdθ
dt=sinθdθ
π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
=π^2√3-π^2/6-π√3/4
=14.0893726833……
837132人目の素数さん
2022/09/25(日) 20:51:57.24ID:Kob8sbcV >m1t≡a2-a1 modm2
>(m1, m2)=Gとすると
>π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
>1/2-t=cosθとおくと、
>-dt=-sinθdθ
>dt=sinθdθ
>π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
>=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
>=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
>=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
>=π^2√3-π^2/6-π√3/4
>=14.0893726833……
>(m1, m2)=Gとすると
>π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
>1/2-t=cosθとおくと、
>-dt=-sinθdθ
>dt=sinθdθ
>π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
>=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
>=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
>=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
>=π^2√3-π^2/6-π√3/4
>=14.0893726833……
838132人目の素数さん
2022/09/25(日) 20:52:04.04ID:Kob8sbcV >>837
>>m1t≡a2-a1 modm2
>>(m1, m2)=Gとすると
>>π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
>>1/2-t=cosθとおくと、
>>-dt=-sinθdθ
>>dt=sinθdθ
>>π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
>>=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
>>=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
>>=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
>>=π^2√3-π^2/6-π√3/4
>>=14.0893726833……
>>m1t≡a2-a1 modm2
>>(m1, m2)=Gとすると
>>π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
>>1/2-t=cosθとおくと、
>>-dt=-sinθdθ
>>dt=sinθdθ
>>π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
>>=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
>>=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
>>=π^2√3-2π[θ=π/3→π/2][θ/2]-2π[θ=π/3→π/2][sin2θ/4]
>>=π^2√3-π^2/6-π√3/4
>>=14.0893726833……
839132人目の素数さん
2022/09/25(日) 20:52:24.28ID:Kob8sbcV840132人目の素数さん
2022/09/26(月) 01:51:17.06ID:d28flYvP 哀れすぎる
連投荒らししか能がないとは
連投荒らししか能がないとは
841132人目の素数さん
2022/09/26(月) 08:58:24.19ID:qtYTCS1L 出題君のことならその通り
かててくわえて、自問自答とか哀れすぎ
かててくわえて、自問自答とか哀れすぎ
842132人目の素数さん
2022/09/26(月) 09:30:51.17ID:0bCgMAFA 1問質問失礼します
複素数平面上の5点O(0),A(1),B(α),C(α^2),D(1/α)について、以下の問いに答えよ。
(1)O,A,B,C,Dがすべて異なる点となるようなαの条件を求めよ。
以下、αは(1)の条件をみたすとする。
(2)3点O,A,Bを通る円が点Cも通るようなαの値をすべて求めよ。
(3)O,A,B,C,Dをすべて通る円が存在するようにαをとることはできるか。
複素数平面上の5点O(0),A(1),B(α),C(α^2),D(1/α)について、以下の問いに答えよ。
(1)O,A,B,C,Dがすべて異なる点となるようなαの条件を求めよ。
以下、αは(1)の条件をみたすとする。
(2)3点O,A,Bを通る円が点Cも通るようなαの値をすべて求めよ。
(3)O,A,B,C,Dをすべて通る円が存在するようにαをとることはできるか。
843132人目の素数さん
2022/09/26(月) 13:30:15.88ID:FQne3KRF >>842
α≠0,1であることが必要…①
このとき、α^2≠0,1
さらにα=α^2⇔α=0,1より、
α≠0,1のときα≠α^2も成り立つ…②
またα≠0,1のとき1/α≠0,1も成り立ち、このとき1/α=α⇔α^2=1だから
α≠0,1のとき1/α≠αも成り立つ…③
また1/α≠α^2⇔α≠1,ω,ω^2…④
①~③より求める条件は
α≠0,1,ω,ω^2…(答)
α≠0,1であることが必要…①
このとき、α^2≠0,1
さらにα=α^2⇔α=0,1より、
α≠0,1のときα≠α^2も成り立つ…②
またα≠0,1のとき1/α≠0,1も成り立ち、このとき1/α=α⇔α^2=1だから
α≠0,1のとき1/α≠αも成り立つ…③
また1/α≠α^2⇔α≠1,ω,ω^2…④
①~③より求める条件は
α≠0,1,ω,ω^2…(答)
844イナ ◆/7jUdUKiSM
2022/09/26(月) 15:19:03.31ID:yw3rhSzQ 前>>736
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
845132人目の素数さん
2022/09/26(月) 16:12:11.31ID:qtYTCS1L >>844
出題君が真摯にレスをつけてくれるといいねw
出題君が真摯にレスをつけてくれるといいねw
846132人目の素数さん
2022/09/26(月) 19:38:32.15ID:d28flYvP >>842
(2)以降が予想以上に大変です
座標平面に置き換えましたが計算地獄でした
どなたか図形的考察や(高校レベルの)複素数特有の計算を用いて、高校生でも無理なく解ける解法をお示しください
よろしくお願いいたします
(2)以降が予想以上に大変です
座標平面に置き換えましたが計算地獄でした
どなたか図形的考察や(高校レベルの)複素数特有の計算を用いて、高校生でも無理なく解ける解法をお示しください
よろしくお願いいたします
847132人目の素数さん
2022/09/26(月) 19:41:56.80ID:qtYTCS1L848132人目の素数さん
2022/09/26(月) 19:43:02.01ID:qtYTCS1L 841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れすぎ
出題君のことならその通り
かててくわえて、自問自答とか哀れすぎ
849132人目の素数さん
2022/09/26(月) 19:43:48.59ID:qtYTCS1L >>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
850132人目の素数さん
2022/09/26(月) 19:44:01.20ID:qtYTCS1L 名前:イナ ◆/7jUdUKiSM Mail:sage 投稿日:2022/09/26(月) 15:19:03.31 ID:yw3rhSzQ
前>>736
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
前>>736
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
851132人目の素数さん
2022/09/26(月) 19:44:18.89ID:qtYTCS1L >>844
出題君が真摯にレスをつけてくれるといいねw
出題君が真摯にレスをつけてくれるといいねw
852132人目の素数さん
2022/09/26(月) 19:44:29.09ID:qtYTCS1L >>844
出題君が真摯にレスをつけてくれるといいねw
出題君が真摯にレスをつけてくれるといいねw
853132人目の素数さん
2022/09/26(月) 19:44:53.78ID:qtYTCS1L 841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れす
出題君のことならその通り
かててくわえて、自問自答とか哀れす
854132人目の素数さん
2022/09/26(月) 19:45:10.39ID:qtYTCS1L855132人目の素数さん
2022/09/26(月) 19:45:37.92ID:qtYTCS1L 852 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 19:44:29.09 ID:qtYTCS1L
>>844
出題君が真摯にレスをつけてくれるといいねw
853 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 19:44:53.78 ID:qtYTCS1L
841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れす
>>844
出題君が真摯にレスをつけてくれるといいねw
853 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 19:44:53.78 ID:qtYTCS1L
841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れす
856132人目の素数さん
2022/09/26(月) 19:45:58.23ID:qtYTCS1L >>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
857132人目の素数さん
2022/09/26(月) 19:46:04.81ID:qtYTCS1L >>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
858132人目の素数さん
2022/09/26(月) 22:35:41.48ID:d28flYvP n≧1とする。
n+1個の整数
2^0,2^1,...,2^n
から無作為に異なる2つの整数を選んで足し合わせてできる整数を、3で割ったときの余りが1となる確率p_nをnで表せ。
n+1個の整数
2^0,2^1,...,2^n
から無作為に異なる2つの整数を選んで足し合わせてできる整数を、3で割ったときの余りが1となる確率p_nをnで表せ。
859132人目の素数さん
2022/09/26(月) 22:52:11.41ID:qtYTCS1L (1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
860132人目の素数さん
2022/09/26(月) 22:52:24.67ID:qtYTCS1L >>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
861132人目の素数さん
2022/09/26(月) 22:55:40.01ID:8cD5Fi3E 出題者からなんのレスもないのに、一生懸命解答しようとする
イナさんには敬服します。
おしむらくは、解答が短すぎること。
もっと長い解答でレスを要求しつづけましょう。
イナさんには敬服します。
おしむらくは、解答が短すぎること。
もっと長い解答でレスを要求しつづけましょう。
862132人目の素数さん
2022/09/26(月) 22:57:29.68ID:8cD5Fi3E >前>>736
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
863132人目の素数さん
2022/09/26(月) 22:58:00.23ID:8cD5Fi3E >>849
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
864132人目の素数さん
2022/09/26(月) 23:48:10.67ID:3NZ1an0O >>793
a, b, c, …, kまでは成り立つと仮定して
llx/l]個を新たに取り除く。
しかしその中のal, bl, …の倍数は既に除かれているので加える
abl、acl, …の倍数は除く
…というのとをやっていくと
lのときも正しいことが分かる。
x=nとすると
n(1-1/a)(1-1/b)…=φ(n)となる。
a, b, c, …, kまでは成り立つと仮定して
llx/l]個を新たに取り除く。
しかしその中のal, bl, …の倍数は既に除かれているので加える
abl、acl, …の倍数は除く
…というのとをやっていくと
lのときも正しいことが分かる。
x=nとすると
n(1-1/a)(1-1/b)…=φ(n)となる。
865132人目の素数さん
2022/09/27(火) 00:20:14.02ID:wbHUtqvc >>794
約数をd₁, d₂, …, dₙとすると
φ(n/d₁)+…+φ(n/dₙ)
φ(n/d₁)はd₁の倍数のうち他の約数とは互いに素なものの個数を表す。よってこの和はnになる。
n=15とすると
d₁=1、d₂=3, d₃=5、d₄=15で
φ(1)+φ(3)+φ(5)+φ(15)
=1+2+4+8=15=n
15
5 10
3 6 9 12
1 2 4 7 8 11 13 14
約数をd₁, d₂, …, dₙとすると
φ(n/d₁)+…+φ(n/dₙ)
φ(n/d₁)はd₁の倍数のうち他の約数とは互いに素なものの個数を表す。よってこの和はnになる。
n=15とすると
d₁=1、d₂=3, d₃=5、d₄=15で
φ(1)+φ(3)+φ(5)+φ(15)
=1+2+4+8=15=n
15
5 10
3 6 9 12
1 2 4 7 8 11 13 14
866132人目の素数さん
2022/09/27(火) 00:33:06.55ID:wbHUtqvc867132人目の素数さん
2022/09/27(火) 01:20:42.55ID:wbHUtqvc868132人目の素数さん
2022/09/27(火) 01:29:08.88ID:wbHUtqvc869132人目の素数さん
2022/09/27(火) 02:06:46.18ID:wbHUtqvc 1の原始n乗根は何個あるか
870132人目の素数さん
2022/09/27(火) 02:06:52.58ID:bRD/OLHR 𝟙*φ = 𝟙*φᵉᵁᴸ
→μ*(𝟙*φ) = μ*(𝟙*φᵉᵁᴸ)
→(μ*𝟙)*φ = (μ*𝟙)*φᵉᵁᴸ
→φ = φᵉᵁᴸ
→μ*(𝟙*φ) = μ*(𝟙*φᵉᵁᴸ)
→(μ*𝟙)*φ = (μ*𝟙)*φᵉᵁᴸ
→φ = φᵉᵁᴸ
871741
2022/09/27(火) 07:54:29.79ID:EFY7TwyJ >>745
お答えくださってどうもありがとう!
お答えくださってどうもありがとう!
872132人目の素数さん
2022/09/27(火) 09:20:15.80ID:CMRjnN5K873132人目の素数さん
2022/09/27(火) 09:20:47.01ID:CMRjnN5K >(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
874132人目の素数さん
2022/09/27(火) 09:21:22.54ID:CMRjnN5K >出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>かててくわえて、自問自答とか哀れすぎ
875132人目の素数さん
2022/09/27(火) 09:21:41.61ID:CMRjnN5K >出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
876132人目の素数さん
2022/09/27(火) 09:22:05.62ID:CMRjnN5K >>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
877132人目の素数さん
2022/09/27(火) 09:22:17.31ID:CMRjnN5K レスしてやれよ!w
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
878132人目の素数さん
2022/09/27(火) 09:22:45.83ID:CMRjnN5K せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
879132人目の素数さん
2022/09/27(火) 09:22:55.02ID:CMRjnN5K >>878
>せっかっくイナさんが詳しい解答書いてくれてるんだ。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
>せっかっくイナさんが詳しい解答書いてくれてるんだ。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
880132人目の素数さん
2022/09/27(火) 09:23:32.03ID:CMRjnN5K 864 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 23:48:10.67 ID:3NZ1an0O
(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
881132人目の素数さん
2022/09/27(火) 09:24:44.05ID:CMRjnN5K レスしてやれよ。
出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
882132人目の素数さん
2022/09/27(火) 09:24:53.93ID:CMRjnN5K >>881
>レスしてやれよ。
>出しっぱなしかよw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>レスしてやれよ。
>出しっぱなしかよw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
883132人目の素数さん
2022/09/27(火) 09:25:57.84ID:CMRjnN5K 自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
884132人目の素数さん
2022/09/27(火) 09:26:05.16ID:CMRjnN5K >>883
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
885132人目の素数さん
2022/09/27(火) 15:14:04.72ID:fP+nze4b >>869
n乗根と原始n乗根
xⁿ-1=0、
x=cosθ+isinθ、θ=2πk/n
k=0, 1, …, n-1
既約剰余系φ(n)だけ原始n乗根はある。その他を含めてn乗根は全部でn個ある。
1の6乗根は6個ある
1、-1、(-1±√3i)/2、(1±√3i)/2
1乗根1個、2乗根1個、3乗根2個、原始6乗根2個。1、2、3、6。
n乗根と原始n乗根
xⁿ-1=0、
x=cosθ+isinθ、θ=2πk/n
k=0, 1, …, n-1
既約剰余系φ(n)だけ原始n乗根はある。その他を含めてn乗根は全部でn個ある。
1の6乗根は6個ある
1、-1、(-1±√3i)/2、(1±√3i)/2
1乗根1個、2乗根1個、3乗根2個、原始6乗根2個。1、2、3、6。
886132人目の素数さん
2022/09/27(火) 15:44:15.41ID:fP+nze4b Fₙ(x)=Π[n/d] (x^(n/d)-1)^(μ(d))とおく
原始n乗根のみを根とする多項式
定数項は+1、1次の項の係数はμ(n)
原始n乗根の和f(n)
Σ[n/d]f(d)=1(n=1)、0(n>1)=μ(n)
原始n乗根ρに対してρᵏ (k=0, 1, …, n-1)はn乗根を表す。
(a, b)=1の時, 1のa乗根と1のb乗根をかけるとab乗根が全て出てくる。r=1、θ=2π((ay+bx)/ab)
原始n乗根のみを根とする多項式
定数項は+1、1次の項の係数はμ(n)
原始n乗根の和f(n)
Σ[n/d]f(d)=1(n=1)、0(n>1)=μ(n)
原始n乗根ρに対してρᵏ (k=0, 1, …, n-1)はn乗根を表す。
(a, b)=1の時, 1のa乗根と1のb乗根をかけるとab乗根が全て出てくる。r=1、θ=2π((ay+bx)/ab)
887132人目の素数さん
2022/09/27(火) 15:48:27.74ID:3Y0twqbg >>842
0,α,α^2を通る円の中心はβ=α^2(α'-1)/(α-α')...①
これが1を通るとき|1-β|=|0-β|
(1-β)(1-β)'=1-β-β'+ββ'=ββ'
よってβ+β'=1だからRe(β)=1/2
まで分かりましたがこの先に進めません
円の方程式が複雑で出せません
どなたかよろしくお願いいたします
0,α,α^2を通る円の中心はβ=α^2(α'-1)/(α-α')...①
これが1を通るとき|1-β|=|0-β|
(1-β)(1-β)'=1-β-β'+ββ'=ββ'
よってβ+β'=1だからRe(β)=1/2
まで分かりましたがこの先に進めません
円の方程式が複雑で出せません
どなたかよろしくお願いいたします
888132人目の素数さん
2022/09/27(火) 15:54:36.78ID:CMRjnN5K 自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
889132人目の素数さん
2022/09/27(火) 15:55:04.38ID:CMRjnN5K せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
890132人目の素数さん
2022/09/27(火) 15:55:16.35ID:CMRjnN5K >せっかっくイナさんが詳しい解答書いてくれてるんだ。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。
891132人目の素数さん
2022/09/27(火) 15:55:28.82ID:CMRjnN5K せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。
892132人目の素数さん
2022/09/27(火) 15:55:44.19ID:CMRjnN5K 883 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:25:57.84 ID:CMRjnN5K
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
893132人目の素数さん
2022/09/27(火) 15:56:01.68ID:CMRjnN5K 自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
894132人目の素数さん
2022/09/27(火) 15:56:26.36ID:CMRjnN5K レスしてやれよ。
出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
895132人目の素数さん
2022/09/27(火) 15:56:50.27ID:CMRjnN5K >レスしてやれよ。
>出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
896132人目の素数さん
2022/09/27(火) 15:57:11.15ID:CMRjnN5K 883 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:25:57.84 ID:CMRjnN5K
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
884 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:26:05.16 ID:CMRjnN5K
>>883
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
884 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:26:05.16 ID:CMRjnN5K
>>883
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
897132人目の素数さん
2022/09/27(火) 17:28:36.01ID:3Y0twqbg >>887
γz'+γ'z=zz'...①は原点を通る円の方程式である。
①がz=1を通るので
γ+γ'=1
よってRe(γ)=1/2
①にγ=1/2+ciを代入し、これがz=α=p+qiを通るならば、
(1/2+ci)(p-qi)+(1/2-ci)(p+qi)=p^2+q^2
(1/2){(p-qi)+(p+qi)}+ic{(p-qi)-(p+qi)}=p^2+q^2
p+2qc=p^2+q^2
c=(p^2+q^2-p)/2q...②
したがってこのとき
γ=(1/2)+i(p^2+q^2-p)/2q
であり、
γz'+γ'z=zz'⇔{1+i(p^2+q^2-p)}z'+{1-i(p^2+q^2-p)}z=2qzz'
(z+z')-i(p^2+q^2-p)(z-z')=zz'
これがさらにz=α^2=p^2-q^2+2pqiを通るとき、
2(p^2-q^2)+4pq(p^2+q^2-p)=(p^2-q^2)^2+(2pq)^2
無理こんなの解けない
γz'+γ'z=zz'...①は原点を通る円の方程式である。
①がz=1を通るので
γ+γ'=1
よってRe(γ)=1/2
①にγ=1/2+ciを代入し、これがz=α=p+qiを通るならば、
(1/2+ci)(p-qi)+(1/2-ci)(p+qi)=p^2+q^2
(1/2){(p-qi)+(p+qi)}+ic{(p-qi)-(p+qi)}=p^2+q^2
p+2qc=p^2+q^2
c=(p^2+q^2-p)/2q...②
したがってこのとき
γ=(1/2)+i(p^2+q^2-p)/2q
であり、
γz'+γ'z=zz'⇔{1+i(p^2+q^2-p)}z'+{1-i(p^2+q^2-p)}z=2qzz'
(z+z')-i(p^2+q^2-p)(z-z')=zz'
これがさらにz=α^2=p^2-q^2+2pqiを通るとき、
2(p^2-q^2)+4pq(p^2+q^2-p)=(p^2-q^2)^2+(2pq)^2
無理こんなの解けない
898132人目の素数さん
2022/09/27(火) 19:25:41.38ID:3Y0twqbg すいませんこれが本当に解けないのでよろしくお願いいたします
解決したところまで書きます
複素数平面上の5点O(0),A(1),B(α),C(α^2),D(1/α)について、以下の問いに答えよ。
(1)O,A,B,C,Dがすべて異なる点となるようなαの条件を求めよ。
以下、αは(1)の条件をみたすとする。
(2)3点O,A,Bを通る円が点Cも通るようなαの値をすべて求めよ。
(3)O,A,B,C,Dをすべて通る円が存在するようにαをとることはできるか。
解決したところまで書きます
複素数平面上の5点O(0),A(1),B(α),C(α^2),D(1/α)について、以下の問いに答えよ。
(1)O,A,B,C,Dがすべて異なる点となるようなαの条件を求めよ。
以下、αは(1)の条件をみたすとする。
(2)3点O,A,Bを通る円が点Cも通るようなαの値をすべて求めよ。
(3)O,A,B,C,Dをすべて通る円が存在するようにαをとることはできるか。
899132人目の素数さん
2022/09/27(火) 19:30:43.65ID:3Y0twqbg >>898
解決したところまで書きます
α'はαの共役複素数とする。
0,α,α^2を通る円の中心は、(ネットから拾ってきた結果を用いて)
β=α^2(α'-1)/(α-α')...①
と表される。
βを中心とする円はO(0)を通るから、この円がA(1)を通るとき
|β-1|=|β-0|
|{α^2(α'-1)/(α-α')}-1|=|α^2(α'-1)/(α-α')|
|α^2(α'-1)-(α-α')|=|α^2(α'-1)|…②
ここまでは導けましたが方程式②を解くことが困難で挫折しました
この方程式は高校範囲で解けますか?
解決したところまで書きます
α'はαの共役複素数とする。
0,α,α^2を通る円の中心は、(ネットから拾ってきた結果を用いて)
β=α^2(α'-1)/(α-α')...①
と表される。
βを中心とする円はO(0)を通るから、この円がA(1)を通るとき
|β-1|=|β-0|
|{α^2(α'-1)/(α-α')}-1|=|α^2(α'-1)/(α-α')|
|α^2(α'-1)-(α-α')|=|α^2(α'-1)|…②
ここまでは導けましたが方程式②を解くことが困難で挫折しました
この方程式は高校範囲で解けますか?
900132人目の素数さん
2022/09/27(火) 20:05:02.62ID:CMRjnN5K901132人目の素数さん
2022/09/27(火) 20:24:55.86ID:3Y0twqbg902132人目の素数さん
2022/09/27(火) 20:50:07.38ID:3Y0twqbg 質問の回答待ちをしている間にもう一つ質問したいと思います。
n^2(nCk)/n!が整数となるような正整数の組(n,k)(ただしn≧k)をすべて求めよ。
n^2(nCk)/n!が整数となるような正整数の組(n,k)(ただしn≧k)をすべて求めよ。
903132人目の素数さん
2022/09/27(火) 20:51:54.79ID:rTbfAC+/904132人目の素数さん
2022/09/27(火) 23:32:58.81ID:CMRjnN5Kレス数が900を超えています。1000を超えると表示できなくなるよ。
ニュース
- 【酒】「匂いが独特」「アル中かよ」 在来線グリーン車の飲酒問題に賛否両論! 車内飲酒「反対」7割 マナーと自由のバランスは? [ごまカンパチ★]
- 生活保護の受給者、週15時間から20時間の労働活動が義務付けられることが決まる、180万人の生活保護 2025年フランス [お断り★]
- 【ラジオ】中居正広、ニッポン放送『ON&ON AIR』は通常通り放送される 「どんな1年になるんだろうな、何やるんでしょうね」 [冬月記者★]
- 【TBS】中居正広『金スマ』年明け初回SPが映画『花束みたいな恋をした』に差し替え!現実味帯びる“レギュラー消滅”危機 ★2 [Ailuropoda melanoleuca★]
- 大阪府民の約4割が「東京」をライバル視 埼玉、千葉など「vs隣県」も如実 各県の「ライバル意識」を調査 ★4 [首都圏の虎★]
- ■「能登には来ないで」から1年の今、深刻なボランティア不足が続く能登「人手が足りない」★4 [七波羅探題★]
- お前らが子供の頃流行ってた芸人
- バナナマンのブサイクな方
- 金バエさん、腕が椅子に背もたれみたいになってしまう [931948549]
- 妻「今日何食べたい?」夫「簡単なのでいいよ」(ヽ゜ん゜)「おっと部屋に籠るか」👈これよくないらしいゾ [152212454]
- 【年末年始暇な奴来い】安価で指定されたものを全力で探してうpするスレ
- 【画像】ちんぽのぬいぐるみがAmazonで発売中!早くしないと売り切れるぞ!! [288593948]