>>625
つづき

(参考)
https://oshiete.goo.ne.jp/qa/811014.html
教えてgoo
1のn乗根
質問者:noname#108554質問日時:2004/03/20 23:58回答数:13件
n=11のときにはどのように求めればよいのでしょうか?
高校で習うやり方では求められない最小のnです。
また、一般のnに対して求めるようなアルゴリズムはあるのでしょうか?
ちなみに、Mathematica4にやらせたところ、
(-1)^(1/11)のように出力されます。
No.11ベストアンサー

回答者: siegmund 回答日時:2004/03/24 14:08
mathworld のページ
http://mathworld.wolfram.com/TrigonometryAngles.
を見ていましたら,mathematica で
FunctionExpand[Sin[2π/11]]
などとやると,sin(2π/11) の具体的表式が出てくることがわかりました.
おい,かんべんしてくれよ,というような式です.
複素数の 3/5 乗などあって気持ちの悪い表式ですが,
共役な項などあるのでもっと簡単にはなりそうです.
N で近似値を出させると,ちゃんと虚部はゼロ(精度範囲で)になり,
sin(2π/11)の値が出てきます.
Mathematica の標準設定では mπ/n の三角関数で n≦6 の場合は
自動的に解析的表式に置き換えられるようです.
なお,grothendieck さんが No.3 で紹介されているページには
But this quintic equation has a cyclic Galois Group,
and so x, and hence sin(π/11) ,
can be expressed in terms of radicals,
although the explicit expression is quite complicated.

No.3
回答者: grothendieck 回答日時:2004/03/21 03:27
n=11については下記URLが参考になるかもしれません。
参考URL:http://mathworld.wolfram.com/TrigonometryAnglesP

https://mathworld.wolfram.com/TrigonometryAnglesPi11.html
Wolfram MathWorld
Trigonometry Angles--Pi/11
(引用終り)
以上