X



Inter-universal geometry と ABC予想 (応援スレ) 65

■ このスレッドは過去ログ倉庫に格納されています
1132人目の素数さん
垢版 |
2022/02/12(土) 11:20:25.41ID:/qkcTHB7
(前“応援”スレが、1000又は1000近くになったので、新スレ立てる)
前スレ:Inter-universal geometry と ABC予想 (応援スレ) 64
https://rio2016.5ch.net/test/read.cgi/math/1641704497/
詳しいテンプレは、下記旧スレへのリンク先ご参照
Inter-universal geometry と ABC予想 (応援スレ) 52
https://rio2016.5ch.net/test/read.cgi/math/1613784152/1-13

(参考)
https://twitter.com/math_jin
math_jin 出版序文リンク Andrew Putman 2021年3月6日
https://drive.google.com/file/d/1n1XMCNyQxswQGrxPIZnCCMx6wJka0ybh/view

望月Inter-universal Teichmuller theory (abbreviated as IUT) (下記)は、新しい局面に入りました。
査読が終り出版されました。また、“Explicit”版が公開され、査読は完了したようです。
IUTの4回の国際会議は無事終わり、Atsushi Shiho (Univ. Tokyo, Japan)先生が、参加したようです。
IUTが正しいことは、99%確定です。
このスレは、IUT応援スレとします。番号は前スレ43を継いでNo.44からの連番としています。
(なお、このスレは本体IUTスレの43からの分裂スレですが、実は 分裂したNo43スレの中では このスレ立ては最初だったのです!(^^;)

つづく
https://twitter.com/5chan_nel (5ch newer account)
527132人目の素数さん
垢版 |
2022/04/23(土) 20:45:29.83ID:MU2asfqc
>>495 追加
>宇宙際Teichmuller理論
>[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF   NEW !! (2020-12-23)
>https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf

<”宇宙”について>
これ、望月氏の 宇宙 ”relationships between universes”の説明が、下記にあるけど
結構独特で、世間的には、ちょっとズレている気がする。「複数の宇宙の使用は、1960年代の数学」(下記)とかね
一方、(後述の)ちょうど1960年代に、数学基礎論で強制法が考えられて、「強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大する」(下記)みたいな話がある
だから、数学基礎論の強制法を知っている人(あるいは、いまどき ”universe”の数学的意味を検索した人)は、IUTの”Inter-universal”という語法に違和感を感じる気がする
代数系なり代数幾何にしろ、集合論や圏論としても、せいぜい集合と類までで収まるはず。(圏論でも、”局所的に小さい (locally small) ”で収まるはず)”宇宙”は、普通は出てこない

つづく
528132人目の素数さん
垢版 |
2022/04/23(土) 20:46:07.04ID:MU2asfqc
>>527
つづき

<下記に対訳を作ってみた>
<原文>
P27
§ 2.10. Inter-universality: changes of universe as changes of coordinates
One fundamental aspect of the links [cf. the discussion of §2.7, (i)] ? namely, the Θ-link and log-link ? that occur in inter-universal Teichm¨uller theory is their incompatibility with the ring structures of the rings and schemes that appear in their domains and codomains.
In particular, when one considers the result of transporting an ´etale-like structure such as a Galois group [or ´etale fundamental group] across such a link [cf. the discussion of §2.7, (iii)], one must abandon the interpretation of such a Galois group as a group of automorphisms of some ring [or field] structure [cf. [AbsTopIII], Remark 3.7.7, (i); [IUTchIV], Remarks 3.6.2, 3.6.3], i.e., one must regard such a Galois group as an abstract topological group that is not equipped with any of the “labelling structures” that arise from the relationship between the Galois group and various scheme-theoretic objects.
It is precisely this state of affairs that results in the quite central role played in inter-universal Teichm¨uller theory by results in [mono-]anabelian geometry, i.e., by results concerned with reconstructing various scheme-theoretic structures from an abstract topological group that “just happens” to arise from scheme theory as a Galois group/´etale fundamental group.

つづく
529132人目の素数さん
垢版 |
2022/04/23(土) 20:46:24.38ID:MU2asfqc
>>528
つづき

<google訳>
P27
§2.10。 宇宙際:座標の変化としての宇宙の変化
リンクの1つの基本的な側面[cf. §2.7、(i)]の議論、つまり、宇宙際タイヒミュラー理論で発生するΘリンクとログリンクは、それらのdomains and codomainsとに現れるリングとスキームのリング構造との非互換性です。
特に、ガロア群[またはエタール基本群]のような「エタールのような構造」をそのようなリンクを介して輸送した結果を考えると[cf. §2.7、(iii)]の議論では、あるリング[または体]構造の自己同形群としてのそのようなガロア群の解釈を放棄しなければなりません[cf. [AbsTopIII]、備考3.7.7、(i); [IUTchIV]、備考3.6.2、3.6.3]、つまり、そのようなガロア群は、ガロア群との関係から生じる「ラベリング構造」を備えていない抽象的な位相群と見なす必要があります。
さまざまなスキーム理論オブジェクト。
宇宙際タイヒミュラー理論で[モノ]遠アーベル幾何学の結果、つまり抽象的な位相群からのさまざまな概型理論構造の再構築に関係する結果によって、非常に中心的な役割を果たしているのはまさにこの状況です。
それは、ガロア群/エタール基本群としての概型理論から生じる「たまたま」です。

つづく
530132人目の素数さん
垢版 |
2022/04/23(土) 20:47:06.27ID:MU2asfqc
>>529
つづき

<原文>
In this context, we remark that it is also this state of affairs that gave rise to the term “inter-universal”:
That is to say, the notion of a “universe”, as well as the use of multiple universes within the discussion of a single set-up in arithmetic geometry, already occurs in the mathematics of the 1960’s, i.e., in the mathematics of Galois categories and ´etale topoi associated to schemes.
On the other hand, in this mathematics of the Grothendieck school, typically one only considers relationships between universes
- i.e., between labelling apparatuses for sets - that are induced by morphisms of schemes,
i.e., in essence by ring homomorphisms.
The most typical example of this sort of situation is the functor between Galois categories of ´etale coverings induced by a morphism of connected schemes.
By contrast, the links that occur in inter-universal Teichm¨uller theory are constructed by partially dismantling the ring structures of the rings in their domains and codomains [cf. the discussion of §2.7, (vii)], hence necessarily result in
much more complicated relationships between the universes -
i.e., between the labelling apparatuses for sets - that are adopted in the Galois categories that occur in the domains and codomains of these links,
i.e., relationships that do not respect the various labelling apparatuses for sets that arise from correspondences between the Galois groups that appear and the respective ring/scheme theories that occur in the domains and codomains of the links.

つづく
531132人目の素数さん
垢版 |
2022/04/23(土) 20:47:34.90ID:MU2asfqc
>>530
つづき

<google訳>
これに関連して、「宇宙際」という用語を生み出したのもこの状況であることに注意してください:
つまり、「宇宙」の概念、および数論幾何学の単一のセットアップの議論内での複数の宇宙の使用は、1960年代の数学、つまりガロアの数学ですでに発生しています。スキームに関連付けられたカテゴリと「古いトポス」。
一方、グロタンディーク派のこの数学では、通常、宇宙間の関係のみを考慮します。
-つまり、スキームの射によって誘発されるセットのラベリング装置間-
つまり、本質的に環準同型によるものです。
この種の状況の最も典型的な例は、接続されたスキームの射によって誘発された「エタール射」のガロアカテゴリー間の関手です。
対照的に、宇宙際タイヒミュラー理論で発生するリンクは、ドメインと終域のリングのリング構造を部分的に解体することによって構築されます[cf. §2.7、(vii)]の議論、したがって必然的に結果として
宇宙間のはるかに複雑な関係-
つまり、これらのリンクの終域と終域で発生するガロアのカテゴリで採用されているセットのラベリング装置の間で、
つまり、出現するガロア群と、リンクの終域および終域で発生するそれぞれのリング/スキーム理論との間の対応から生じるセットのさまざまなラベリング装置を尊重しない関係。

つづく
532132人目の素数さん
垢版 |
2022/04/23(土) 20:48:50.87ID:MU2asfqc
>>531
つづき

<原文>
That is to say, it is precisely this sort of situation that is referred to by the term “inter-universal”.
Put another way, a change of universe may be thought of [cf. the discussion of §2.7, (i)] as a sort of abstract/combinatorial/arithmetic version of the classical notion of a “change of coordinates”.
In this context, it is perhaps of interest to observe that, from a purely classical point of view, the notion of a [physical] “universe” was typically visualized as a copy of Euclidean three-space.
Thus, from this classical point of view, a “change of universe” literally corresponds to a “classical change of the coordinate system - i.e., the labelling apparatus - applied to label points in Euclidean three-space”!

<google訳>
つまり、まさにこの種の状況が「宇宙際」という言葉で呼ばれているのです。
言い換えれば、宇宙の変化は考えられるかもしれません[cf. §2.7の議論、(i)]「座標の変化」の古典的な概念の一種の抽象/組み合わせ/算術バージョンとして。
この文脈では、純粋に古典的な観点から、[物理的]「宇宙」の概念が通常ユークリッド3空間のコピーとして視覚化されたことを観察することはおそらく興味深いことです。
したがって、この古典的な観点から、「宇宙の変化」は文字通り「ユークリッド3空間のラベルポイントに適用される座標系の古典的な変化-つまり、ラベル付け装置-」に対応します。

つづく
533132人目の素数さん
垢版 |
2022/04/23(土) 20:49:47.73ID:MU2asfqc
>>532

つづき

<原文>
Indeed, from an even more elementary point of view, perhaps the simplest example of the essential phenomenon under consideration here is the following purely combinatorial phenomenon: Consider the string of symbols
010
? i.e., where “0” and “1” are to be understood as formal symbols.
Then, from the point of view of the length two substring 01 on the left, the digit “1” of this substring may be specified by means of its “coordinate relative to this substring”, namely, as the symbol to the far right of the substring 01. In a similar vein, from the point of view of the length two substring 10 on the right, the digit “1” of this substring may be specified by means of its “coordinate relative to this substring”, namely, as the symbol to the far left of the substring 10.
On the other hand, neither of these specifications via “substring-based coordinate systems”is meaningful to the opposite length two substring; that is to say, only the solitary abstract symbol “1” is simultaneously meaningful, as a device for specifying the digit of interest, relative to both of the “substring-based coordinate systems”.

つづく
534132人目の素数さん
垢版 |
2022/04/23(土) 20:50:05.04ID:MU2asfqc
>>533
つづき

<google訳>
確かに、さらに基本的な観点から、ここで検討されている本質的な現象のおそらく最も単純な例は、次の純粋な組み合わせ現象です。記号の文字列を検討してください。
010
?つまり、「0」と「1」は正式な記号として理解されます。
次に、左側の長さ2の部分文字列01の観点から、この部分文字列の数字「1」は、その「この部分文字列に対する座標」によって、つまり、の右端の記号として指定できます。部分文字列01。同様に、右側の長さ2の部分文字列10の観点から、この部分文字列の数字「1」は、その「この部分文字列に対する座標」、つまり次のように指定できます。サブストリング10の左端にある記号。
一方、「サブストリングベースの座標系」によるこれらの仕様はどちらも、反対の長さの2つのサブストリングには意味がありません。つまり、両方の「部分文字列ベースの座標系」に対して、対象の数字を指定するためのデバイスとして、単独の抽象記号「1」のみが同時に意味を持ちます。

つづく
535132人目の素数さん
垢版 |
2022/04/23(土) 20:51:35.39ID:MU2asfqc
>>534
つづき

https://ja.wikipedia.org/wiki/%E5%BC%B7%E5%88%B6%E6%B3%95
強制法
強制法が初めて使われたのは1962年、連続体仮説と選択公理のZFからの独立性を証明した時のことである。強制法は60年代に大きく再構成されシンプルになり、集合論や、再帰理論などの数理論理学の分野で、極めて強力な手法として使われてきた。
直観的意味合い
直観的には、強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大することから成り立っている。 この大きい宇宙では、拡大する前の宇宙には無かった ω = {0,1,2,…} の新しい部分集合をたくさん要素に持っている。

https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%A9%E3%82%B9_(%E9%9B%86%E5%90%88%E8%AB%96)
クラス (集合論)
集合論及びその応用としての数学におけるクラスまたは類(るい、英: class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツェルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。
(どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス (small class) とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである。
集合論以外の文脈では「クラス」を「集合」の同義語として使うこともある。この用法はクラスと集合が現代的な集合論の用語法に基づく区別をされていなかった時代からある。19世紀以前の多くの"クラス"に関する議論は集合のことを指していた、もしくはもっと曖昧な概念をさしていた。この意味でのクラスは「級」という訳語を当てることがある(たとえば滑らかさのクラスの C1-級など)。

つづく
536132人目の素数さん
垢版 |
2022/04/23(土) 20:51:53.69ID:MU2asfqc
>>535
つづき

https://ja.wikipedia.org/wiki/%E5%9C%8F_(%E6%95%B0%E5%AD%A6)
圏 (数学)
圏の大きさ
圏 C が小さい (small) とは、対象の類 ob(C) および射の類 hom(C) がともに集合となる(つまり真の類でない)ときに言い、さもなくば大きい (large) と言う。射の類が集合とならずとも、任意の二対象 a, b ∈ ob(C) をとるごとに、射の類 hom(a, b) が集合となるならば(hom(a, b) を射集合、ホム集合などと呼び)、その圏は局所的に小さい (locally small) と言う[3]。集合の圏など数学における重要な圏の多くは、小さくないとしても、少なくとも局所的に小さい。
文献によっては、局所的に小さい圏のみを扱い、それを単に圏と呼ぶ場合もある[4][5]。
(引用終り)
以上
■ このスレッドは過去ログ倉庫に格納されています
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況