>>279
下記の話?

>なお、Z^(1)と Z^(下記 Profinite integer)とで、
>前者 Z^(1)には 1のn乗根は 射影の成分として入っているので
>射影として取り出すことができるが
>後者のZ^(下記 Profinite integer)は、そうではない
>という違いがある

それは、下記の「射影 (集合論)」の”射影”ですけど
なんか、おかしいですか?

https://ja.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1_(%E9%9B%86%E5%90%88%E8%AB%96)
射影 (集合論)
数学の集合論における射影(しゃえい、英: projection)あるいは射影写像、特に標準射影は順序組に対してその一つの成分を対応させる写像である[1]。より一般に射影は、集合の添え字付けられた任意の族の直積(デカルト積)上で定義された、元の族から特定の添字をもつ成分を選び出す写像を言う。選択公理を仮定すれば、空でない集合からなる任意の族に関して、射影は必ず全射になる。