>>726 追加

”then consider loops of mutation ('simulate a∈a'):
 A → B → C → D → A・・・”


”using a・a^∞=a^∞ to differential the F.L. '○H'→ ABC inequality”
かよ

これ2005年なので、IUTそのままじゃないだろうが、
トンデモないことを発想しているね、望月先生は!w

https://www.kurims.kyoto-u.ac.jp/~motizuki/travel-japanese.html
https://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Hodge-Arakelov%20Theory%20(RIMS%20Kyoto%202005-12).pdf
[13] Inter-universal Hodge-Arakelov Theory (京都大学数理解析研究所 2005年12月)
(抜粋)
P1
§1. Scheme-theoretic Hodge-Arakelov Theory
 original motivation: ABC Conjecture ('absolute derivative of L/F1')

P2
§2. Inter-Universal Geometry
(P2の最下段)
・・consider Species:' type of mathematical object'}'set theoretic realization of objects of a category functors'
mutation: A → B
      ↑  ↑
     species
P3
then consider loops of mutation ('simulate a∈a'):
 A → B → C → D → A・・・
e.g.: anabelian geometry (certain schemes)-πq→(certain profinite gps)-?→(certain schemes)
・・・when considering formal composites of operations:

(P3の中段)
・・・need to (shift & commute) to form infinite product a^∞ s.t.
 a・a^∞=a^∞
i.e., a1(a0(a-1(a-2(・・・)))
     ||
    a0(a-1(a-2(・・・)))
P4
(P4の下段)
using a・a^∞=a^∞ to differential the F.L. '○H'→ ABC inequality