>>655 追加
∈の「ループ」の資料とF1 について、下記あり
Need 'global Hodge Theory '
  ↓
Solve 'a∈a'! 'membership Equation'
(contradicts 'axiom of foundation'!)
と出てくる
また、“ABC Conjecture → Need geometry/F1 (e.g., derivative)”とも

https://www.kurims.kyoto-u.ac.jp/~motizuki/travel-japanese.html
望月 出張・講演
英語
https://www.kurims.kyoto-u.ac.jp/~motizuki/Anabelian%20Geometry%20from%20an%20Inter-universal%20Point%20of%20View%20(RIMS%20Kyoto%202004-09).pdf
[9] Anabelian Geometry from an Inter-universal Point of View (京都大学数理解析研究所 2004年9月)
P2
§2 The Membership Equation:
motivation
ABC Conjecture → Need geometry/F1 (e.g., derivative)
→Need 'global Hodge Theory '(cf. Hodge-Arakelov Theory: close, but still scheme-theoretic)
  ↓
Solve 'a∈a'! 'membership Equation'
(contradicts 'axiom of foundation'!)
  ↓
from quotient by identifying ai's→a, bi's→b,
          a4∈・・・
          ||
       a3∈{a3,b3}
       ||
    a2∈{a2,b2}
    ||
a1∈{a1,b1}