>>896 追加

1. Construction and Examples of Multiplier Ideals
This preliminary lecture is devoted to the construction and first properties of multiplier ideals.
We start by discussing the algebraic and analytic incarnations of these ideals.
After giving the example of monomial ideals, we survey briefly some of the invariants of singularities that can be defined via multiplier ideals.

<google訳 一部手直し>
1. 乗法イデアルの構成と例
この予備講義は、乗法イデアルの構築と最初の特性に専念しています。
これらのイデアルの代数的および解析的な具体化について議論することから始めます。
monomial idealsの例を示した後、乗法イデアルを介して定義できる特異点の不変量のいくつかを簡単に調べます。

(monomial ideal)
https://en.wikipedia.org/wiki/Monomial_ideal
Monomial ideal
In abstract algebra, a monomial ideal is an ideal generated by monomials in a multivariate polynomial ring over a field.
A toric ideal is an ideal generated by differences of monomials (provided the ideal is a prime ideal). An affine or projective algebraic variety defined by a toric ideal or a homogeneous toric ideal is an affine or projective toric variety, possibly non-normal.