【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。x,yは有理数とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)の右辺を展開すると、x,yが有理数、p^{1/(p-1)}が無理数なので、(3)は成り立たない。
(4)の(ap)^{1/(p-1)}が有理数のとき、x,yは、(3)のx,yのa^{1/(p-1)}倍となるので、(4)も成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
探検
二項展開によるフェルマーの最終定理の証明
レス数が1000を超えています。これ以上書き込みはできません。
1日高
2020/09/30(水) 20:02:28.14ID:LSjp8KRv980日高
2020/10/17(土) 11:22:31.25ID:GETDVM1Z >977
x^2+y^2=(x+2)^2の解はx^2+y^2=(x+√3)^2の解の2√3/3倍となるので
x^2+y^2=(x+2)^2のx,yに有理数を代入すると成り立たない
となるから間違っています
x^2+y^2=(x+2)^2は、a=1です。
x^2+y^2=(x+√3)^2は、a=√3/2です。
x^2+y^2=(x+2)^2の解はx^2+y^2=(x+√3)^2の解の2√3/3倍となるので
x^2+y^2=(x+2)^2のx,yに有理数を代入すると成り立たない
となるから間違っています
x^2+y^2=(x+2)^2は、a=1です。
x^2+y^2=(x+√3)^2は、a=√3/2です。
981日高
2020/10/17(土) 11:26:57.05ID:GETDVM1Z >978
元々本当はa=rなんですがね
そうです。a=1と、a=1以外となります。
元々本当はa=rなんですがね
そうです。a=1と、a=1以外となります。
982日高
2020/10/17(土) 11:30:20.81ID:GETDVM1Z (修正28)
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)はp^{1/(p-1)}が無理数なので、x,yに有理数を代入すると、成り立たない。
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入すると、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
(参考)
(3)を(sw)^p+(tw)^p=(sw+p^{1/(p-1)})^p、s^p+t^p=(s+(p^{1/(p-1)})/w}^p…(3')と
する。
(s,tは有理数、wは無理数)
(4)はx、y、(ap)^{1/(p-1)}を有理数とすると成り立たないので、
(3')も(p^{1/(p-1)})/wを有理数とすると成り立たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)はp^{1/(p-1)}が無理数なので、x,yに有理数を代入すると、成り立たない。
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入すると、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
(参考)
(3)を(sw)^p+(tw)^p=(sw+p^{1/(p-1)})^p、s^p+t^p=(s+(p^{1/(p-1)})/w}^p…(3')と
する。
(s,tは有理数、wは無理数)
(4)はx、y、(ap)^{1/(p-1)}を有理数とすると成り立たないので、
(3')も(p^{1/(p-1)})/wを有理数とすると成り立たない。
983132人目の素数さん
2020/10/17(土) 11:37:43.07ID:bs/t62vw >>979
x^p+y^p=(x+√2)^p…(*)
は,√2が無理数なので、x,yにどんな数を代入しても、(*)の解x,y,zは整数比とならない
この論証は,それ自体だけで,他の論拠を必要とせず正しいと確定できるのですか?という意味です。
x^p+y^p=(x+√2)^p…(*)
は,√2が無理数なので、x,yにどんな数を代入しても、(*)の解x,y,zは整数比とならない
この論証は,それ自体だけで,他の論拠を必要とせず正しいと確定できるのですか?という意味です。
984日高
2020/10/17(土) 11:39:16.70ID:GETDVM1Z 【定理】p=2のとき、x^p+y^p=z^pは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)を積の形にすると、r{(y/r)^2-1}=a2x(1/a)…(2)となる。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はr=2なので、yに有理数を代入すると、xは有理数となる。
(4)の解x,y,zは、(3)の解x,y,zのa倍となるので、(4)は自然数解x,y,zを持つ。
∴p=2のとき、x^p+y^p=z^pは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)を積の形にすると、r{(y/r)^2-1}=a2x(1/a)…(2)となる。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はr=2なので、yに有理数を代入すると、xは有理数となる。
(4)の解x,y,zは、(3)の解x,y,zのa倍となるので、(4)は自然数解x,y,zを持つ。
∴p=2のとき、x^p+y^p=z^pは自然数解x,y,zを持つ。
985日高
2020/10/17(土) 11:49:09.87ID:GETDVM1Z >983
x^p+y^p=(x+√2)^p…(*)
は,√2が無理数なので、x,yにどんな数を代入しても、(*)の解x,y,zは整数比とならない
この論証は,それ自体だけで,他の論拠を必要とせず正しいと確定できるのですか?という意味です。
他の論拠を必要とせず正しいと確定できます。
x^p+y^p=(x+√2)^p…(*)
は,√2が無理数なので、x,yにどんな数を代入しても、(*)の解x,y,zは整数比とならない
この論証は,それ自体だけで,他の論拠を必要とせず正しいと確定できるのですか?という意味です。
他の論拠を必要とせず正しいと確定できます。
986132人目の素数さん
2020/10/17(土) 11:58:46.03ID:gwOz3Hch987132人目の素数さん
2020/10/17(土) 12:03:12.77ID:gwOz3Hch >>980
> >977
> x^2+y^2=(x+2)^2の解はx^2+y^2=(x+√3)^2の解の2√3/3倍となるので
> x^2+y^2=(x+2)^2のx,yに有理数を代入すると成り立たない
> となるから間違っています
>
> x^2+y^2=(x+2)^2は、a=1です。
> x^2+y^2=(x+√3)^2は、a=√3/2です。
aの値は関係ないですね
間違いは間違いです
> >977
> x^2+y^2=(x+2)^2の解はx^2+y^2=(x+√3)^2の解の2√3/3倍となるので
> x^2+y^2=(x+2)^2のx,yに有理数を代入すると成り立たない
> となるから間違っています
>
> x^2+y^2=(x+2)^2は、a=1です。
> x^2+y^2=(x+√3)^2は、a=√3/2です。
aの値は関係ないですね
間違いは間違いです
988日高
2020/10/17(土) 13:00:48.00ID:GETDVM1Z (修正29)
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)はp^{1/(p-1)}が無理数なので、x,yに有理数を代入すると、成り立たない。
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入しても、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
(参考)
(3)のx,yが無理数のときは、(sw)^p+(tw)^p=(sw+p^{1/(p-1)})^p、s^p+t^p=(s+(p^{1/(p-1)})/w}^p…(3')とする。(s,tは有理数、wは無理数)
(4)はx、y、(ap)^{1/(p-1)}を有理数とすると成り立たないので、
(3')も(p^{1/(p-1)})/wを有理数とすると成り立たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)はp^{1/(p-1)}が無理数なので、x,yに有理数を代入すると、成り立たない。
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入しても、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解x,y,zを持たない。
(参考)
(3)のx,yが無理数のときは、(sw)^p+(tw)^p=(sw+p^{1/(p-1)})^p、s^p+t^p=(s+(p^{1/(p-1)})/w}^p…(3')とする。(s,tは有理数、wは無理数)
(4)はx、y、(ap)^{1/(p-1)}を有理数とすると成り立たないので、
(3')も(p^{1/(p-1)})/wを有理数とすると成り立たない。
989日高
2020/10/17(土) 13:06:17.86ID:GETDVM1Z >987
> x^2+y^2=(x+2)^2は、a=1です。
> x^2+y^2=(x+√3)^2は、a=√3/2です。
aの値は関係ないですね
間違いは間違いです
どういう意味でしょうか?
> x^2+y^2=(x+2)^2は、a=1です。
> x^2+y^2=(x+√3)^2は、a=√3/2です。
aの値は関係ないですね
間違いは間違いです
どういう意味でしょうか?
990132人目の素数さん
2020/10/17(土) 13:09:26.71ID:1wSGNKNZ >>982
こんな短い証明を2つの証明に分ける必要ないでしょう。
別に2つに分けても循環してるのがなかったことにできませんよ。
>>982によると、
1.「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
2.1.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
3.2.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
4.3.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
5.4.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
6.5.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
7.6.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
8.7.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
9.8.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
どこまでいっても本物の証拠にたどり着きません。循環しています。
こんな短い証明を2つの証明に分ける必要ないでしょう。
別に2つに分けても循環してるのがなかったことにできませんよ。
>>982によると、
1.「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
2.1.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
3.2.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
4.3.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
5.4.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
6.5.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
7.6.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
8.7.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
9.8.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
どこまでいっても本物の証拠にたどり着きません。循環しています。
991日高
2020/10/17(土) 13:14:43.61ID:GETDVM1Z >990
どこまでいっても本物の証拠にたどり着きません。循環しています。
どの部分が循環しているのでしょうか?
どこまでいっても本物の証拠にたどり着きません。循環しています。
どの部分が循環しているのでしょうか?
992132人目の素数さん
2020/10/17(土) 13:18:43.11ID:1wSGNKNZ993132人目の素数さん
2020/10/17(土) 13:25:30.64ID:gwOz3Hch >>989
> x^2+y^2=(x+2)^2は、a=1です。
> x^2+y^2=(x+√3)^2は、a=√3/2です。
>
> aの値は関係ないですね
> 間違いは間違いです
>
> どういう意味でしょうか?
aの値を書いたところでおまえの証明が間違っていることが
正しくなるわけがない
> x^2+y^2=(x+2)^2は、a=1です。
> x^2+y^2=(x+√3)^2は、a=√3/2です。
>
> aの値は関係ないですね
> 間違いは間違いです
>
> どういう意味でしょうか?
aの値を書いたところでおまえの証明が間違っていることが
正しくなるわけがない
994日高
2020/10/17(土) 13:26:16.87ID:GETDVM1Z995132人目の素数さん
2020/10/17(土) 13:30:24.51ID:1wSGNKNZ >>994
>>988と>>982は同じ失敗をしている、という意味ですよ。つまり、
>>988によると、
1.「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
2.1.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
3.2.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
4.3.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
5.4.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
6.5.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
7.6.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
8.7.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
9.8.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
どこまでいっても本物の証拠にたどり着きません。循環しています。
>>988と>>982は同じ失敗をしている、という意味ですよ。つまり、
>>988によると、
1.「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
2.1.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
3.2.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
4.3.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
5.4.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
6.5.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
7.6.の「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
8.7.の「(3)に整数比の数を入れても成り立たない」は「(3')に整数比の数を入れても成り立たない」と同じ意味です。
9.8.の「(3')に整数比の数を入れても成り立たない」の証拠は「(4)に整数比の数を入れても成り立たない」です。
どこまでいっても本物の証拠にたどり着きません。循環しています。
996132人目の素数さん
2020/10/17(土) 13:37:18.73ID:1wSGNKNZ >>988
それに、もちろん
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)はp^{1/(p-1)}が無理数なので、x,yに有理数を代入すると、成り立たない。
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入すると、(3)のx、yに有理数÷a^{1/(p-1)}を代入するのと同じ比になる
文章は前から読むものなので、
ここまでで(3)のx、yに有理数÷a^{1/(p-1)}を代入していないので、(4)のx,yに有理数を代入しても、成り立たない。は証拠がなく、いえません。
>>988の証明は失敗です。
それに、もちろん
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)はp^{1/(p-1)}が無理数なので、x,yに有理数を代入すると、成り立たない。
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入
(4)の解は、(3)の解のa^{1/(p-1)}倍となるので、(4)のx,yに有理数を代入すると、(3)のx、yに有理数÷a^{1/(p-1)}を代入するのと同じ比になる
文章は前から読むものなので、
ここまでで(3)のx、yに有理数÷a^{1/(p-1)}を代入していないので、(4)のx,yに有理数を代入しても、成り立たない。は証拠がなく、いえません。
>>988の証明は失敗です。
997日高
2020/10/17(土) 13:39:59.05ID:GETDVM1Z >995
1.「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
ではなく、
「(4)に有理数を入れても成り立たない」の証拠は「(3)に有理数を入れても成り立たない」です。
1.「(4)に整数比の数を入れても成り立たない」の証拠は「(3)に整数比の数を入れても成り立たない」です。
ではなく、
「(4)に有理数を入れても成り立たない」の証拠は「(3)に有理数を入れても成り立たない」です。
998日高
2020/10/17(土) 14:11:14.27ID:GETDVM1Z >996
ここまでで(3)のx、yに有理数÷a^{1/(p-1)}を代入していないので、(4)のx,yに有理数を代入しても、成り立たない。は証拠がなく、いえません。
よく意味がわかりません。
ここまでで(3)のx、yに有理数÷a^{1/(p-1)}を代入していないので、(4)のx,yに有理数を代入しても、成り立たない。は証拠がなく、いえません。
よく意味がわかりません。
999日高
2020/10/17(土) 14:12:21.08ID:GETDVM1Z 【定理】p=2のとき、x^p+y^p=z^pは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)を積の形にすると、r{(y/r)^2-1}=a2x(1/a)…(2)となる。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はr=2なので、yに有理数を代入すると、xは有理数となる。
(4)の解x,y,zは、(3)の解x,y,zのa倍となるので、(4)は自然数解x,y,zを持つ。
∴p=2のとき、x^p+y^p=z^pは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)を積の形にすると、r{(y/r)^2-1}=a2x(1/a)…(2)となる。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はr=2なので、yに有理数を代入すると、xは有理数となる。
(4)の解x,y,zは、(3)の解x,y,zのa倍となるので、(4)は自然数解x,y,zを持つ。
∴p=2のとき、x^p+y^p=z^pは自然数解x,y,zを持つ。
1000132人目の素数さん
2020/10/17(土) 14:14:55.48ID:gwOz3Hch10011001
Over 1000Thread このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 16日 18時間 12分 27秒
新しいスレッドを立ててください。
life time: 16日 18時間 12分 27秒
レス数が1000を超えています。これ以上書き込みはできません。
ニュース
- ベッセント米財務長官 「中国は自身が『悪者』であることを世界に示した」 [お断り★]
- 「安全担保できぬ」 修学旅行先を万博からUSJに変更 千葉県船橋市立の中学 会場内でメタンガスが検知されたことなどを総合的に判断 [ぐれ★]
- 【芸能】広末涼子 勾留で心配される身辺… 風呂は週1~2回、食事類は差し入れ不可の留置所生活 ブラジャー着用を認めない所も [冬月記者★]
- 中年で狂わないために20代で狂っておこう [パンナ・コッタ★]
- 【芸能】《スカートの中に顔を…》 下半身露出報道の石橋貴明 “下ネタ”コント連発のウラで元妻・鈴木保奈美には強烈“束縛”の過去 [冬月記者★]
- 広末涼子容疑者、事故現場にブレーキ痕なし ★2 [おっさん友の会★]
- Q.佐原砂漠はどこにありますか? A.神奈川県です [426433463]
- 万博ってまだ始まってなかったのかよ [399583221]
- オケラとV粘どっちがゴミか議論するスレ🏡
- お前ら人にドン引きされる趣味ある?
- 米国債 [667744927]
- ダンダダン見たら風呂はいれなくなった