X



二項展開によるフェルマーの最終定理の証明

■ このスレッドは過去ログ倉庫に格納されています
1日高
垢版 |
2020/09/30(水) 20:02:28.14ID:LSjp8KRv
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。x,yは有理数とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)の右辺を展開すると、x,yが有理数、p^{1/(p-1)}が無理数なので、(3)は成り立たない。
(4)の(ap)^{1/(p-1)}が有理数のとき、x,yは、(3)のx,yのa^{1/(p-1)}倍となるので、(4)も成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
2020/10/09(金) 19:40:05.03ID:001Azy09
>>434の証明を流用しました。

(修正12♪)
【定理】p=2のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)をさらに変形して、r^p{(y/r)^p-1}(1/r) = p{x^(p-1)+…+r^(p-2)x} …(2')となる。
これを、左辺の左=右辺の左として、
(2')はr^p=pのとき、x^2+y^2=(x+√2)^2…(3)となる。
(3)はx,yを有理数とすると、r=√2なので、解x,yは整数比とならない。
(3)をx'=xw、y'=ywとして、x'^p+y'^p=(x'+(p^{1/p})/w)^p…(3')とする。(wは無理数)
(3)の解x,yが整数比とならないので、(3')の解x',y'も整数比とならない。
(3)のrが有理数のとき、X^p+Y^p=(X^p+(ap)^{1/p})^p…(4)となる。
(4)の解X=x(a^{1/p})、Y=y(a^{1/p})も整数比とならない。
∴p=2のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
2020/10/09(金) 19:42:23.86ID:001Azy09
日高氏の証明(>>434)と、それを流用した私の証明(>>441)を合わせると、以下が言えます。

【定理】pが素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。

これは明らかにおかしいですね。
■ このスレッドは過去ログ倉庫に格納されています
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況