>>193
つづき


自明束
全空間を E = B × F とし、π: E → B を第一成分への射影とする。すなわち、x ∈ B, f ∈ F に対して、π(x, f) = x とする。このとき E は F の B 上のファイバー束である。ここで E は、局所的にだけでなく大域的に、底空間とファイバーの直積となっている。そのようなファイバー束を自明束 (trivial bundle) という。S1 × [0, 1] や S1 × R1 のような円柱や、自然数 m, n > 0 に対して Rm+n = Rm × Rn などのように直積で表される図形は、自明束としての構造を持つ。可縮なCW複体上の任意のファイバー束は自明である。

ベクトル束と主束
ベクトル束と呼ばれる、ファイバー束の特別なクラスがあり、これはファイバーがベクトル空間であるようなファイバー束である。(ベクトル束であるためには、束の構造群は線型群でなければならない)。ベクトル束の重要な例には、滑らかな多様体の接束や余接束がある。任意のベクトル束から、主束(下記参照)である、基底の枠束(英語版)を構成することができる。

主束と呼ばれる、ファイバー束の別の特別なクラスがあり、これはその上に群 G による自由かつ推移的な作用が与えられていて、各ファイバーが主等質空間(英語版)であるような束である。束はしばしば主 G 束と呼ぶことによって群とともに特定される。群 G はまた束の構造群でもある。G のベクトル空間 V 上の表現 ρ が与えられると、構造群として ρ(G)⊆Aut(V) なるベクトル束を構成でき、これを同伴束(英語版)と呼ぶ。

つづく