>>118
つづき

2)”カルタンとワイルは,レヴィ・チヴィタが考案した接続の考え方を用いて,エルランゲン・プログラムとリーマン幾何学をより高い見地から統一しました.”
https://www.mathematics-pdf.com/column/noneuclidean.html
非ユークリッド幾何学について よしいず 2003-2011
(抜粋)
エルランゲン・プログラム
 1872年,クラインは,空間とその空間における変換からなる群を与えたとき,その群に属するすべての変換によって不変なものとして,これまでの多くの幾何学が特徴づけられることを指摘しました.この群論によって幾何学を統合するという考え方はエルランゲン・プログラムと呼ばれています.例えばユークリッド幾何学は,距離が与えられた平面と長さを変えない変換からなる群が与えられたものと考えることができます.一般に,さまざまな空間や変換群を与えることにより数多くの幾何学が得られます.
 しかし,エルランゲン・プログラムは万能ではなく,リーマン幾何学はその例外であることが知られています.その後,カルタンとワイルは,レヴィ・チヴィタが考案した接続の考え方を用いて,エルランゲン・プログラムとリーマン幾何学をより高い見地から統一しました.
関連書籍
小林昭七(著): ユークリッド幾何から現代幾何へ,日本評論社,1990
(引用終り)

3)接続 (幾何学):”カルタンはクラインのエルランゲン・プログラムの局所化を試みていたのである。
1920年代にカルタンは、微分形式を用いた記述によって、現在カルタン接続(英語版)と呼ばれるものを発見していった[7]。
カルタンのこの仕事により、リーマン幾何学だけでなく、共形幾何学(英語版)、射影幾何学などのさまざまな幾何学を研究するための基礎が築かれた。”
https://ja.wikipedia.org/wiki/%E6%8E%A5%E7%B6%9A_(%E5%B9%BE%E4%BD%95%E5%AD%A6)
接続 (幾何学)

つづく