>>318 補足

1)
全順序列
0,1,・・,n,・・,ω
で、n→<n< に変えて
0,1,・・ <n< ・・,ω
としても、なんの問題もない
∵自然数Nは、全順序列だから

2)
同様に、実数の数直線上のr∈Rで
−−−−−− r −−−−−−−
ここで、r→<r< に変えて
−−−−−−<r<−−−−−−−
としても、なんの問題もない
∵実数Rは、全順序列だから

3)
前の例では、< には明確な前者と後者がある
後の例では、< には明確な前者と後者がない
しかし、後の例でも、全く問題ない
後の例は、殆ど下記のデデキント切断そのもの
要するに、r∈Rを使って、数直線を、1点r自身、r未満、r超え の3つの部分に分けられるってことだ

4)
よって、”−−−−−−<r<−−−−−−−”としても、なんの問題もない

https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E5%88%87%E6%96%AD
デデキント切断