>>83-84
(引用開始)
”もう少し具体的な話をしましょう。位相空間X上の点列{xn}が点x∈Xに収束することの定義は以下の通りでした。
∀U∈N(x) ∃N∈N ̄ ∀n∈N ̄ n>=N⇒xn∈U
ただしN(x)はxの近傍系です。
ここでFN={xn?n>=N}とおいてみましょう。すると上の収束の定義は次のように書き換えられます。
∀U∈N(x) ∃N∈N ̄ FN⊂U
これがフィルターで書いた場合の収束であり、上の記事の中でいう命題2.3です。つまりフィルター基底B={FN?N∈N ̄}の収束をみているわけです。
このように点列の収束は集合の包含関係で書き換えられます。さらにこの形で書けばFNが点列である必要すらなくね?という発想に至りこれを一般の集合で書き直すことでフィルターの定義にたどり着きます。
(この辺りの「具体的な抽象化の過程」は上の記事では触れなかったのでここで書いておくことにしました。)”
(引用終り)

なるほど
そうだったのか〜!(^^;