クレレ誌
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。
現代の純粋・応用数学を目指して
純粋・応用数学
■ このスレッドは過去ログ倉庫に格納されています
2020/02/25(火) 11:58:05.45ID:xlZ4iTwN
87現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
2020/04/02(木) 22:27:47.19ID:kD9YEDnI >>31
追加
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1200-4.pdf
数理解析研究所講究録 1200 巻 2001 年 39-47
Weight-monodromy conjecture over positive
characteristic local fields
東大数理・修士課程 伊藤哲史 (Tetsushi Ito)
Graduate School of Mathematical Sciences, University of Tokyo
1. INTRODUCTION
本稿ではウェイト・ モノドロミー予想について, 筆者が修士論文 [It] で得た結果を紹
介する. ウェイト・モノドロミー予想は, 局所体上の固有かつ滑らかな代数多様体の $l$
進コホモロジーに定まるウェイト・フィルトレーションとモノドロミー. フィルトレー
ションが, 次数のずれを除いて一致するという予想であり, 一般には未解決の難問であ
る. [It] の主定理は, ウェイト・モノドロミー予想が正標数の局所体上で成り立つ, とい
うことである.
細かな定義は後で述べることにして, まずはウェイト・モノドロミー予想の定式化を
与えよう. $K$ を局所体 (本稿では局所体とは完備離散付値体を意味するものとする), $F$
を剰余体,
$l$ を $F$ の標数と異なる素数とする. $X$ を $K$ 上の固有かつ滑らかな代数多様体
とする.
ウェイト・モノドロミー予想と
はこれらの 2 つのフィルトレーションが次数のずれを除いて一致するという予想である.
予想 Ll (ウエイト. \yen $\text{ノ}$ ドロミー予想, [De2]). $M$ をモノドロミー. フィルトレーショ
ン, $W$ をウェイト・フィルトレーションとする. このとき $M_{i}V=W_{w+i}V$ が全ての $i$ で
成り立つ.
さて, 主結果を述べよう.
定理 12([It]). $K$ が正標数ならばウエイト・モノドロミー予想は正しい.
系として, モデルをとって標数 $p$ に還元することで, $K,$ $F$ が両方とも標数 0 の場合も
正しいことも分かる.
系 L3. $K$ と $F$ の標数が等しければウェイト・モノドロミー予想は正しい.
つづく
追加
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1200-4.pdf
数理解析研究所講究録 1200 巻 2001 年 39-47
Weight-monodromy conjecture over positive
characteristic local fields
東大数理・修士課程 伊藤哲史 (Tetsushi Ito)
Graduate School of Mathematical Sciences, University of Tokyo
1. INTRODUCTION
本稿ではウェイト・ モノドロミー予想について, 筆者が修士論文 [It] で得た結果を紹
介する. ウェイト・モノドロミー予想は, 局所体上の固有かつ滑らかな代数多様体の $l$
進コホモロジーに定まるウェイト・フィルトレーションとモノドロミー. フィルトレー
ションが, 次数のずれを除いて一致するという予想であり, 一般には未解決の難問であ
る. [It] の主定理は, ウェイト・モノドロミー予想が正標数の局所体上で成り立つ, とい
うことである.
細かな定義は後で述べることにして, まずはウェイト・モノドロミー予想の定式化を
与えよう. $K$ を局所体 (本稿では局所体とは完備離散付値体を意味するものとする), $F$
を剰余体,
$l$ を $F$ の標数と異なる素数とする. $X$ を $K$ 上の固有かつ滑らかな代数多様体
とする.
ウェイト・モノドロミー予想と
はこれらの 2 つのフィルトレーションが次数のずれを除いて一致するという予想である.
予想 Ll (ウエイト. \yen $\text{ノ}$ ドロミー予想, [De2]). $M$ をモノドロミー. フィルトレーショ
ン, $W$ をウェイト・フィルトレーションとする. このとき $M_{i}V=W_{w+i}V$ が全ての $i$ で
成り立つ.
さて, 主結果を述べよう.
定理 12([It]). $K$ が正標数ならばウエイト・モノドロミー予想は正しい.
系として, モデルをとって標数 $p$ に還元することで, $K,$ $F$ が両方とも標数 0 の場合も
正しいことも分かる.
系 L3. $K$ と $F$ の標数が等しければウェイト・モノドロミー予想は正しい.
つづく
88現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
2020/04/02(木) 22:28:17.08ID:kD9YEDnI >>87
つづき
したがって, ウェイト・モノドロミー予想は, $K$ が混標数の場合が残されたことに
なる. Langlands 対応などへの応用上は, 残された混標数の場合が重要であると考えら
れる. しかし, この場合は, 様々な部分的な結果はあるものの, 一般には未解決である
$([\mathrm{I}\mathrm{I}],[\mathrm{R}\mathrm{Z}],[\mathrm{S}\mathrm{G}\mathrm{A}7- \mathrm{I}])$.
なお, エタールコホモロジーの比較定理を用いることで, 系 13 から $\mathbb{C}$ 上の Hodge 理論
におけるウェイト・モノドロミー予想の対応物が得られる. すなわち, 複素単位円板上の
代数的な Hodge 構造の退化に対して, Schmid のフィルトレーション ([Sc]) と Steenbrink
のフィルトレーション ([St]) の一致を示すことができる. これはすでに Steenbrink, 斎藤
盛彦氏らによる証明があるが ([St], 510, [Sal], 425), [It] により有限体上に帰着する別
証明が与えられたことになる.
(引用終り)
以上
つづき
したがって, ウェイト・モノドロミー予想は, $K$ が混標数の場合が残されたことに
なる. Langlands 対応などへの応用上は, 残された混標数の場合が重要であると考えら
れる. しかし, この場合は, 様々な部分的な結果はあるものの, 一般には未解決である
$([\mathrm{I}\mathrm{I}],[\mathrm{R}\mathrm{Z}],[\mathrm{S}\mathrm{G}\mathrm{A}7- \mathrm{I}])$.
なお, エタールコホモロジーの比較定理を用いることで, 系 13 から $\mathbb{C}$ 上の Hodge 理論
におけるウェイト・モノドロミー予想の対応物が得られる. すなわち, 複素単位円板上の
代数的な Hodge 構造の退化に対して, Schmid のフィルトレーション ([Sc]) と Steenbrink
のフィルトレーション ([St]) の一致を示すことができる. これはすでに Steenbrink, 斎藤
盛彦氏らによる証明があるが ([St], 510, [Sal], 425), [It] により有限体上に帰着する別
証明が与えられたことになる.
(引用終り)
以上
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【サッカー】川崎フロンターレ、悲願アジア制覇ならず… アルアハリに敗れてACLE準優勝 [ニーニーφ★]
- 【神奈川県警】「ストーカー相談受けた認識なし」川崎21歳女性遺体 県警が被害相談などへの当時の対応を説明 [ぐれ★] [ぐれ★]
- 元フジ渡邊渚さん「毎日大量の誹謗中傷コメントや殺害予告が」「お控えいただければ幸い」心身に影響「ギリギリな状態」★2 [muffin★]
- 憲法「改正が必要」39%「改正は必要なし」17% NHK世論調査 [少考さん★]
- ローソン店員、客にわいせつ疑い 神奈川県警が逮捕 [少考さん★]
- 【川崎ストーカー事件】被害女性の父、県警対応を非難 「ここで殺されたも同じ」と抗議 [シャチ★]
- 【DAZN】AFCチャンピオンズリーグエリート総合8【ACL】
- 【DAZN】フォーミュラGP【F1 F2F3 SF P】Lap1686
- 【フジテレビ】2025 FORMULA 1【NEXT】Lap96
- とらせん
- 海豚専 2025年 Part8
- 【DAZN/ABEMA】リーグ・アン総合 ★15
- ゴールデンウィーク終盤のお🏡
- 中国人識者「よくこんな情けないものを万博に出しましたね😁」→ジャップ発狂 wwwwwwwwwwwwwwwwwwww [271912485]
- 【悲報】ワイ、10年続けた恋が終わる
- もし今 小学生の時に好きだった女と再開したら
- 今日のVIP頭おかしい人多いね
- 【GW暇な奴来い】安価で指定されたものを全力で探してうpするスレ