X



トップページ数学
1002コメント780KB

純粋・応用数学

■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2020/02/25(火) 11:58:05.45ID:xlZ4iTwN
クレレ誌
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。

現代の純粋・応用数学を目指して
0087現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2020/04/02(木) 22:27:47.19ID:kD9YEDnI
>>31
追加

http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1200-4.pdf
数理解析研究所講究録 1200 巻 2001 年 39-47
Weight-monodromy conjecture over positive
characteristic local fields
東大数理・修士課程 伊藤哲史 (Tetsushi Ito)
Graduate School of Mathematical Sciences, University of Tokyo
1. INTRODUCTION
本稿ではウェイト・ モノドロミー予想について, 筆者が修士論文 [It] で得た結果を紹
介する. ウェイト・モノドロミー予想は, 局所体上の固有かつ滑らかな代数多様体の $l$
進コホモロジーに定まるウェイト・フィルトレーションとモノドロミー. フィルトレー
ションが, 次数のずれを除いて一致するという予想であり, 一般には未解決の難問であ
る. [It] の主定理は, ウェイト・モノドロミー予想が正標数の局所体上で成り立つ, とい
うことである.
細かな定義は後で述べることにして, まずはウェイト・モノドロミー予想の定式化を
与えよう. $K$ を局所体 (本稿では局所体とは完備離散付値体を意味するものとする), $F$
を剰余体,
$l$ を $F$ の標数と異なる素数とする. $X$ を $K$ 上の固有かつ滑らかな代数多様体
とする.

ウェイト・モノドロミー予想と
はこれらの 2 つのフィルトレーションが次数のずれを除いて一致するという予想である.
予想 Ll (ウエイト. \yen $\text{ノ}$ ドロミー予想, [De2]). $M$ をモノドロミー. フィルトレーショ
ン, $W$ をウェイト・フィルトレーションとする. このとき $M_{i}V=W_{w+i}V$ が全ての $i$ で
成り立つ.
さて, 主結果を述べよう.
定理 12([It]). $K$ が正標数ならばウエイト・モノドロミー予想は正しい.
系として, モデルをとって標数 $p$ に還元することで, $K,$ $F$ が両方とも標数 0 の場合も
正しいことも分かる.
系 L3. $K$ と $F$ の標数が等しければウェイト・モノドロミー予想は正しい.

つづく
0088現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2020/04/02(木) 22:28:17.08ID:kD9YEDnI
>>87

つづき

したがって, ウェイト・モノドロミー予想は, $K$ が混標数の場合が残されたことに
なる. Langlands 対応などへの応用上は, 残された混標数の場合が重要であると考えら
れる. しかし, この場合は, 様々な部分的な結果はあるものの, 一般には未解決である
$([\mathrm{I}\mathrm{I}],[\mathrm{R}\mathrm{Z}],[\mathrm{S}\mathrm{G}\mathrm{A}7- \mathrm{I}])$.
なお, エタールコホモロジーの比較定理を用いることで, 系 13 から $\mathbb{C}$ 上の Hodge 理論
におけるウェイト・モノドロミー予想の対応物が得られる. すなわち, 複素単位円板上の
代数的な Hodge 構造の退化に対して, Schmid のフィルトレーション ([Sc]) と Steenbrink
のフィルトレーション ([St]) の一致を示すことができる. これはすでに Steenbrink, 斎藤
盛彦氏らによる証明があるが ([St], 510, [Sal], 425), [It] により有限体上に帰着する別
証明が与えられたことになる.
(引用終り)
以上
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況