>832
>【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる。
> (1)の左辺の右側と右辺の右側は等しいので、1={x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)となる。

「(1)の左辺の右側と右辺の右側」が等しくない場合
a(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}(1/a)とするのだろうけど
>このときのaをx,yの式で書くとどうなりますか?

1={x^(p-1)-x^(p-2)y+…+y^(p-1)}(1/a)ですので、
a={x^(p-1)-x^(p-2)y+…+y^(p-1)}となります。