【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と因数分解できる。
したがって、x^2×1=(z+y)(z-y)…(1)となる。
(1)の左辺の右側と右辺の右側は等しいので、1=(z-y)…(2)となる。
(2)をx^2=(z+y)に代入して、x^2=2y+1…(3)となる。
(3)のxに任意の奇数を代入すると、yは、自然数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。