>日高氏にならってもう一つ証明してみる。
【定理】x^2+y^2=z^2は自然数解を持たない。
【証明】z^2-y^2=x^2,z^2-y^2=(z-y)(z+y)なので(z-y)(z+y)=x^2*1。
頭が等しいからz-y=x^2である。よってz+y=1である。

z-y=x^2
z+y=1より、z=1-y
z-y=x^2に、z=1-yを代入すると、
1-y-y=x^2
1-2y=x^2
xに、3を代入すると、
1-2y=9
2y=-8
y=-4
x=3,y=-4となります。
x^2+y^2=z^2に代入すると、
3^2+(-4)^2=5^2となります。