>>215の続き。

> (3)の右辺に、a(1/a)を掛けるとr^(p-1){(y/r)^p-1}=pa{x^(p-1)+…+r^(p-2)x}(1/a)…(5)となる。a(1/a)=1となる。
> r^(p-1)=p以外の場合は、r^(p-1)=paとなる。r=(pa)^{1/(p-1)}となるのでrは有理数となる。(2)はX^p+Y^p=(X+(pa)^{1/(p-1)})^p…(6)となる。

「r^(p-1)=paとなる」もナンセンス。そのようにaを定めるととるしかなかろう。
a=r^(p-1)/pである。rは有理数とする、の意味であろう。すると(2)は確かに(6)になる。

> (6)のX,Y,Zは(4)のx,y,zのa^{1/(p-1)}倍となるので、X:Y:Z=x:y:zとなる。よって、(6)も式は成り立たない。

(6)は成り立たないのに「(6)のX,Y,Zは」と言っているのは、おそらく意味がわかっていない。
a^{1/(p-1)}はr/[p^{1/(p-1)}]に等しいので無理数である。これをdと書こう。
(6)をみたすX,Y,Z(=X+R)があればx=X/d,y=Y/d,z=Z/d(=X/d-R/d)は(2)をみたす、の意味と思われる。
次に、日高氏の大誤謬がある。(2)についていえたのは有理数解がないことだけであって、
背理法で考えるならばX,Yは自然数なのでx=X/d,y=Y/dは無理数である。よって矛盾は生じない。

> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。

これはまったく証明されていない。