>>212 よろしくお願いします。

こちらは、日高氏に通じるとは思わないが、少しずつ>>1を読み解きます。
丸囲みの数字は(n)と書き換えます。

> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】x^p+y^p=z^p…(1)を、z=x+rとおいて、x^p+y^p=(x+r)^p…(2)とする。

日高氏の頭の中には、たぶん、背理法はない。
だから「(1)をみたす自然数x,y,zがあって……」とは考えない。
(1)を見てそれに自然数解あるいは有理数解があるかどうか考えている。
そう思うと「z=x+rとおいて」もそれほど変ではない。
定数rを決めるごとに(2)の有理数解x,yがあるかどうかを判定しようとしているのである。

> (2)を積の形に変形してrを求める。x,y,z,r,aは0をのぞく有理数とする。
> (2)を(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(3)とする。
> (3)はr^(p-1)=pとなるので、r=p^{1/(p-1)}となる。(2)はX^p+Y^p=(X+p^{1/(p-1)})^p…(4)となる。

ここはまったくのナンセンス。
日高氏は「●▲=■★ならば●=■」だと信じている。
「r^(p-1)=pと仮定すると」なら問題はない。その場合、

> (4)はrが無理数となるので、式は成り立たない。

これは正しい。
「式は成り立たない」を「式をみたす有理数X,Yは存在しない」と読めば、であるが。